以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于:
就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。
关于AI模型部署与相关知识的讲解本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。免费额度说明:指出在freely.aliyun.com可领取500元免费额度,但有使用限制,不能部署满血版和较大的增流模型。平台服务差异:介绍了DLC、DSW和EAS等模型部署平台服务的差别。模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。Deepseek R1模型的制作及相关模型比较R1模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。R1模型的蒸馏与微调:用Deepseek RE Zero蒸馏出带思考的数据,基于Deepseek V3微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成R1。R1与其他模型的差别:R1是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。模型的相互帮助:Deepseek R1反过来蒸馏数据微调V3,形成互相帮助的局面,使两个模型都更强。
相较于最新Grok 3 Beta模型,Claude 3.7 Sonnet(64k extended thinking)在推理方面几乎打成平手。而在数学、视觉推理方面,又略逊色于Grok 3 Beta。与o3-mini、DeepSeek R1相比,除了数学,带有扩展思考模式的Claude 3.7 Sonnet拿下最高分。Claude 3.7 Sonnet在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来了显著提升。除了传统基准测试外,它甚至在宝可梦游戏测试中超越了所有先前模型AI编码智能体,一次完成45分钟任务