Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。

Answer

以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线:

第一个月:

  • 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。
  • 推荐资源:
    • 书籍:《人工智能:一种现代方法》
    • 在线课程:Coursera 上的“人工智能入门”课程
    • 练习项目:使用 Python 实现简单的数据分析和可视化
  • 学习技巧和注意事项:多做笔记,理解概念,注重实践。

第二个月:

  • 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。
  • 推荐资源:
    • 书籍:《概率论与数理统计》《线性代数及其应用》
    • 在线课程:edX 上的“机器学习基础”课程
    • 练习项目:使用监督学习算法进行数据分类预测
  • 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。

第三个月:

  • 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。
  • 推荐资源:
    • 书籍:《深度学习》
    • 在线课程:Udacity 上的“深度学习入门”课程
    • 练习项目:构建并优化一个简单的神经网络模型
  • 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。

在整个学习过程中,您还可以:

  • 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。
  • 掌握提示词的技巧,提高与 AI 的交互效果。
  • 参与相关的社区和论坛,分享学习经验和成果。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

通往AGI之路介绍.pdf

1.记忆:先认的历史、基本术语,重EVAL ATINGA NALTDNG物、方法和原理等开始了解2.理解:进一步了解AI领的主要思想APPLVING3.应用:深人了解Fromp。选择适合自己AI对话、绘画语音产品,每天都用它UNDERSTANDING使用们来决实际6提开效LEMENEERING分析:大量间读各类交章,视以及行告。理解各知识之间的关系5.评价:通过各类课程与书籍更入学习湖信息的价值、提出自己观点和论钮舒造:将精选A如APP产品、6泊产品都试试。创造你自己的新想法C Designed by wa我们阅读,我们思考,我们选择。不求多,只求精,只求有更高的价值。First do it,then do it right,then do it better.o Designed y wkai保持新鲜度,每天为AI添加新的维度。知识库内容精选宁国2:小互日2日CDeslgned y ka中国口-2月小用3月阳4间2月26日Deslgned by inkan不止是一个AI知识库通往AGI之路0.从这里启程1.1入门:AI学习路径不止是多,是很多。1.2入门:Prompts(提示词)

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

Others are asking
一个从来没有接触过AI技术的、电脑方面就会打字的人怎么学习AI及应用
对于从未接触过 AI 技术但会打字的新手,以下是学习 AI 及应用的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想深入了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,有以下学习路径: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-22
哪里可以找到免费且可以系统学习机器学习的课程
以下是一些可以免费系统学习机器学习的课程资源和学习路径: 1. 对于大型语言模型(LLM)开发的学习: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法,掌握相关论文,如 Attention is All You Need、BERT 论文等。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 2. 神经网络架构方面: 神经网络是机器学习文献中的一类模型,在完成吴恩达的 Coursera 机器学习课程后,可以寻找 Geoffrey Hinton 的机器学习神经网络课程。 一般神经网络架构可分为三类:前馈神经网络,这是实际应用中最常见的神经网络类型;循环网络,在他们的连接图中定向了循环,更具有生物真实性。 3. 强化学习的入门学习: 如果基础薄弱,可先学习概率论和线性代数相关课程。 对机器学习无基础的话,先看吴恩达的课程,再以李宏毅的课程作为补充,只看前几节讲完神经网络的部分。 学完后跟着《动手学深度学习 https://hrl.boyuai.com/》动手学习,只看前五章。 接着看 B 站王树森的深度学习课程的前几节学习强化学习基础知识点。 最后可以看《动手学强化学习》,看到 DQN 的部分。
2025-03-22
深度学习模型架构有哪些
深度学习模型架构主要包括以下几种: 1. Transformer 模型: 由编码器(Encoder)和解码器(Decoder)两大部分组成。 每个部分由多个相同的层堆叠而成,每层包含多头注意力机制(Multihead Attention)和位置全连接前馈网络。 编码器将自然语言转换成向量文本,解码器基于编码器的输出和之前生成的输出逐步生成目标序列。 2. DiT 架构:结合扩散模型和 Transformer 的架构,用于高质量图像生成。 3. 存算一体架构: 是未来 AI 硬件的发展趋势。 运行几百亿个参数的大模型时具有优势,可避免数据搬运。 此外,在端到端算法的时代,有观点认为不应继续使用冯诺依曼架构,且在存算一体的芯片之上,有望诞生全新的算法。在将大模型与私域知识结合方面,有重新训练、微调、RAG、关键词工程、加长 Context 等方法,其中长 Context 和 RAG 被认为较有希望。
2025-03-22
AI产品经理学习路径
以下是为您提供的 AI 产品经理学习路径: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程来了解 AI 的概念。 能够使用 AI 产品,并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 说到底也是工具和手段,产品经理要关注的还是场景、痛点、价值。
2025-03-22
小白如何通过学习AI跨行进入游戏行业
对于小白想要通过学习 AI 跨行进入游戏行业,以下是一些建议: 1. 学习基础的 AI 知识:包括机器学习、深度学习的基本概念和算法,了解常见的模型如神经网络等。 2. 掌握相关编程语言:例如 Python,它在 AI 开发中广泛应用。 3. 研究游戏中的 AI 应用:了解游戏中的智能角色、路径规划、策略制定等方面是如何运用 AI 技术的。 4. 实践项目:通过参与开源项目或自己创建小型的游戏 AI 项目,积累实际经验。 5. 学习游戏开发知识:了解游戏引擎、游戏设计原则等,以便更好地将 AI 技术融入游戏开发中。 6. 参加相关培训课程或在线学习资源:获取系统的学习和指导。 7. 建立人脉:与游戏行业的专业人士交流,了解行业动态和需求。 8. 制作优秀的作品集:展示自己在游戏 AI 方面的成果和能力,增加求职竞争力。
2025-03-21
机器学习入门
以下是关于机器学习入门的相关知识: 实现人工智能的方法: 自上而下的方法:尝试对推理过程进行建模,将其形式化并转化为计算机程序,即符号推理。例如医生诊断时应用大量规则得出结果,但从人类专家提取知识较困难,且有些任务无法简化为知识操作。 自下而上的方法:模拟大脑中的神经元,在计算机中构建人工神经网络,通过举例让其学习解决问题,类似于新生儿的学习过程。 机器学习: 是人工智能的一部分,基于数据使计算机学会解决问题。 经典机器学习在《机器学习入门课程》中有详细介绍。 学习资源:《》。 算法学习中的数学基础: 统计学:机器学习是统计的另一种形式,可利用统计学预估数据规律。统计学中关注的数据汇总技术包括平均值、中位数、众数等。平均值在机器学习中的特征归一化、计算 R² 值等方面有应用;中位数在将数据样本划分为等间隔或四分位数范围时有用;众数可用于查找数据集中占主导地位的元素或类别。
2025-03-21
AI知识库
“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 我们是一个开源 AI 社区,坚信人工智能将重新塑造我们的思考和学习方式,为每个人带来强大力量,这种信念激发了创建这个知识库的决心。 在搭建知识库的过程中收获很多,特别感谢一路上支持和推荐知识库的伙伴们,正是大家的肯定与支持,使我们得以有信心持续为知识库添砖加瓦,探索 AGI 的无限可能。 WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,大家贡献并整合各种 AI 资源,使得大家都可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。无论您是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。 例如,“通往 AGI 之路”使用飞书软件搭建,当您需要了解 AI 某一领域知识时,在 AGI 的飞书大群中跟机器人对话就能获取对应的资料。
2025-03-22
感情陪伴类AI有哪些?
以下是一些常见的感情陪伴类 AI: MyShell:网址为 myshell.ai。 Talkie:网址为 talkieai.com。 SpicyChat.AI:网址为 spicychat.ai。 此外,Replika 也是一款感情陪伴类 AI 应用程序,网址为 https://replika.com/ ,它能够为用户提供情感支持、聊天互动、心理健康辅导等服务。
2025-03-22
应该怎么引导AI帮我写论文,指令是什么
引导 AI 帮您写论文,您可以参考以下方法和指令: 1. 提供详细的背景信息:例如“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 2. 明确具体的要求:比如论文的主题、字数、结构、引用格式等。 3. 给出清晰的指令:例如“写一篇关于左右。” 4. 注意指令的逻辑:自己需要给出开头,让 AI 理解语言逻辑,从而撰写下半部,并包含必要内容。而不是模糊式提问,比如“小王,写一篇自律的报告给我”。 5. 运用不同的方法:如扩写与改写法,提供内容的上半部,让 AI 撰写下半部,并以不同写作技巧和风格转换生成的内容。还可以使用反问法,让 AI 问您问题,以更深入地了解您的需求和思考逻辑。 需要注意的是,使用 AI 写论文并非道德的使用方式,了解这种可能性的存在以及它已被学生使用很重要,但这超出了介绍性指南的范围,去讨论 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题。如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。
2025-03-22
有哪些像monica一样的集成式ai工具
以下是一些类似于 Monica 的集成式 AI 工具: 1. 通义听悟:在对比多个播客转文字的产品后,阿里出品的通义听悟体验较好。其首页突出转录播客的功能,注册赠送 10 小时免费转录,支持播客链接直接转录,准确率高,还能在转录后自动生成问答回顾。选中文本,音频内容会自动定位到对应位置。 2. Monica:是一款综合性的 AI 助手应用程序,具有以下特点: 基于先进的 AI 模型(如 GPT4、Claude 3、Gemini 等)提供多种功能,包括聊天对话、搜索查询、文本写作、翻译、图像生成、PDF/视频摘要等。 可以在浏览器扩展程序或独立应用程序中使用,支持在 Chrome、Edge 等浏览器中使用,也可以下载独立的 iOS 和 Android 应用程序。 提供免费和付费订阅服务,免费用户每天有 30 次查询限制,付费订阅可以获得无限次数的使用权。 具有“Make It More”等创新功能,可以将图像进一步放大、夸张,生成有趣的视频内容。 集成了非常多的功能,包括聊天对话、PDF 翻译问答、Youtube 摘要、文生图等能力,甚至还集成了一些办公场景的实用工具。值得一提的是,备忘功能(Memo)支持记录用户看过(总结过)的文章、视频,支持剪藏图片,作为个人知识库进行沉淀,这部分的内容也可以在聊天模块进行提问。 不仅从浏览器插件拓展到了桌面应用,还把工具覆盖到了图片、视频、PDF、网页、智能体、翻译、总结、思维导图等等众多最受欢迎的使用场景。近期还发布了 VSCode 编程助手——Monica Code 插件,据说还要发布自己版本的 Cursor。 Monica 的官网地址是:https://monica.im 通义听悟暂无相关官网地址介绍。
2025-03-22
ManusAI核心技术解读
Manus AI 的核心技术包括以下几个方面: 1. 代理功能:能够自动完成任务并交付完整结果。最终交付的结果形式多样,如文档、交互网页、播客、视频、图表等,使用户能更直观地获取信息。 2. 充分利用 AI 能力:不仅进行推理和任务规划,还结合代码能力生成最终结果。 3. 云端自动运行:AI 在云端电脑上完成包括数据收集、内容撰写、代码生成等任务。其体验特点是任务运行时间较长,但最终交付的结果超出预期。 您可以通过以下链接获取更多详细信息: 体验报告:
2025-03-22
我想找免费的图片去除背景的工具
以下为您推荐一些免费的图片去除背景工具及相关信息: 1. Stable Diffusion: 安装插件REMBG,安装地址是https://github.com/AUTOMATIC1111/stablediffusionwebuirembg.git。安装好之后重启,就有背景去除的选项框。 模型选择第一个u2net,直接点击生成。抠图效果不错,但边缘轮廓可能有黑边,可通过点击后面的Alpha matting调整参数(如Erode size:6、Foreground threshold:143、Background threshold:187)来去掉黑边。 这里还有专门做服装抠图和给动漫抠图的模型。 若想要这个插件,可添加公众号【白马与少年】,回复【SD】获取。 2. RMBG1.4: 高精度背景去除,适用于电商、广告等场景。 支持视频背景批量去除,提供蒙版输出功能。 云端处理速度快,性能卓越。 链接:https://github.com/ZHOZHOZHO/ComfyUIBRIA_AIRMBG 、https://x.com/xiaohuggg/status/1755075272410538450?s=20
2025-03-19
使用ai绘图能够将带货产品批量换背景,使用在小红书社区
以下是一些能够为带货产品批量换背景并应用于小红书社区的人员信息: 卡飞猫:15692004031,擅长摄影写真、banner 生成、替换产品。 韩君奇:13060035786,能够批量出图,做小红书种草。 阿鱼:18102592057,擅长各种类型的 AI 画图,以及 AI 视频提效。 吴燕波:15766104311,可进行日常出图,视频等。
2025-03-18
使用ai换背景能够实现真实的画面效果
使用 AI 换背景能够实现较为真实的画面效果,以下为您介绍几种相关方法: 在 SD 中,若要实现更精确的蒙版,如人物的眼睛或身上配饰等,可以使用 Segment Anything 中的 GroundingDINO 模型。启用该模型后,AI 会自动下载,也可从云盘下载放到指定文件目录。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还能通过预览箱体获取眼睛编号进行单一调整。选择要修改的蒙版上传到重绘蒙版中,添加提示词如“闭眼”并生成。之后可给人物换背景,加载生成的背景蒙版,选择大模型和正向提示词,如“简单背景、花、国画、工笔”,并选择蒙版模式。若效果不佳,可将图片放入图生图中用 tile 模型细化,还可在 PS 中用创成式填充修复头发。 在 PS 中,可利用“创成式填充”去掉主体以外的人物,如在水面画选区并输入提示词添加渔船,选择头部区域添加棒球帽,选择草地部分输入提示词更换,选择树输入提示词更改等。但 PS 的“创成式填充”并非无所不能,生成的图可能质量不高或不匹配,需要更多尝试和后期处理。 Google 的 Gemini 文生图 AI 在抠图、换背景、打光影方面表现出色。如能无中生有地换背景,进行商业级别的背景合成与打光,通常能在短时间内取得稳定且较好的预期结果。
2025-03-18
生成头像chinali,背景今日家庭联盟开始AGI之路
很抱歉,不太明白您“生成头像 chinali,背景今日家庭联盟开始 AGI 之路”的具体需求。能否请您再详细描述一下,比如头像的风格、色彩偏好、人物特征等方面的要求,以便我为您提供更准确的帮助。
2025-03-12
有没有换人物背景相关的comfyui工作流
ComfyUI 视频背景替换工作流主要包括以下几个方面: 1. 前景处理: 使用 SAM 之前的版本来分割视频背景,提示词和阈值可根据实际情况调整。 移除背景后,使用图像遮罩复合生成灰色背景的图像批次,以在后续与背景融合时过渡更自然顺滑。灰色背景有助于柔化前景对象(如人物)的边缘,减少锯齿或硬边缘的视觉效果,改善抠图质量,为后续处理做准备,减少背景干扰,增加深度感,便于视觉检查。 在网盘里可以找到对应的模型,下载后按文件夹目录地址放置。 2. 边缘的处理: 核心是优化和改善前景对象的边缘,使其能够与新背景无缝融合,同时保持前景细节的完整性和自然性。 通过遮罩模糊生长(growMaskWithBlur),调整扩展和模糊半径来控制边缘的遮罩。 边缘处理的主要目的包括改善前景和背景之间的过渡效果、消除锯齿和不自然的硬边缘、使整体合成效果更加自然和平滑。 遮罩的白色区域(人物轮廓)是需要重点处理和优化的区域,灰色过渡区域是创造平滑过渡的关键区域。 SetLatentNoiseMask 在 latent space 中指导模型关注和处理特定区域,主要关注白色和灰色区域。 处理过程中模型在白色和灰色区域进行精细处理,包括边缘平滑、消除锯齿、调整像素等操作,特别注重前景和背景交界处的自然过渡。 最终效果是人物轮廓边缘变得更加平滑自然,减少或消除锯齿和硬边缘,在前景(人物)和新背景之间创造更自然的 blend 效果。 3. 模型与 lora: 模型部分,选一个现有和视频画风对应的即可。 lora 用了一个 animate lcm,加速生成的时间。 4. 背景: 背景部分,可以是图片或者视频,为了有视觉效果,加了一个图像的模糊,让生成的视频有种景深的效果。 5. 前景与背景的初步融合: 图像遮罩复合(ImageCompositeMasked)用于将前景(人物)精确地与新背景合并,使用遮罩决定哪些部分保留前景,哪些部分显示背景。 图像混合(ImageBlend)具有微调和平滑化、颜色协调、细节增强、灵活性等额外作用,允许对最终效果进行更精细的控制。
2025-03-11
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
介绍AI基本概念和目前发展阶段
AI 的基本概念: 人工智能(AI)是指让计算机模拟人类智能的技术。 主要分支包括机器学习、深度学习、自然语言处理等,它们之间存在密切联系。 目前发展阶段: 已取得显著进展,如聊天机器人具备基本对话能力,能用于客户服务和简单查询响应。 推理者如 ChatGPT 能解决复杂问题并提供详细分析和意见。 智能体虽能执行部分自动化业务,但仍需人类参与。 创新者如谷歌 DeepMind 的 AlphaFold 模型能协助人类完成新发明。 最高级别的组织型 AI 能自动执行组织的全部业务流程,但尚未完全实现。 对于新手学习 AI: 建议阅读「」熟悉术语和基础概念。 浏览入门文章了解历史、应用和发展趋势。 在「」中找到初学者课程,特别推荐李宏毅老师的课程。 通过在线教育平台按自己节奏学习并获取证书。 根据兴趣选择特定模块深入学习,掌握提示词技巧。 理论学习后进行实践,尝试使用各种产品并分享实践成果。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。 如果希望继续精进 AI: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学、线性代数、概率论。 熟悉算法和模型,如监督学习、无监督学习、强化学习。 学会评估和调优模型性能。 了解神经网络基础,包括网络结构和激活函数。
2025-03-20
现在人工智能处于什么阶段
目前人工智能仍处于“任务渗透”阶段,而非“职业颠覆”。最常用于编程(37%)和写作(10%),对体力劳动和专业职业影响较小。中等收入、高学历职业的 AI 采用率最高,低收入和极高收入的较低。AI 增强人类工作的比例(57%)大于完全自动化(43%),短期内主要是辅助工具,而非取代人工。未来可能从“人机共创”模式向“任务外包”模式演进。 在过去,20 世纪 60 年代人工智能的研究更多处于理论阶段,不能实用。但随着计算机算力的增长,神经网络取得了突破。例如,2009 年和 2012 年分别在语音识别和图像识别比赛中取得成功。 如今,AI 产品在客户支持、法律服务和软件工程等行业展示了与市场的契合度,生成式人工智能正在经历快速增长,但也存在投资回报、融资环境不均衡、用户保留率等问题。预计 2024 年将是真正的 AI 应用从“副驾驶”转变为“人类代理”的一年,未来将更有能力完成更高层次的认知任务。
2025-03-06
AI的应用要经历哪几个阶段
AI 的应用通常要经历以下几个阶段: 1. 聊天机器人阶段:这是 AI 应用的初始阶段,主要实现简单的对话功能。 2. 推理系统阶段:能够进行一定的逻辑推理和分析。 3. 智能体阶段:构建具备自主思考、决策和执行能力的智能体。 4. 创新者阶段:在某些领域展现出创新能力。 5. 完整组织阶段:形成完整的、综合性的组织形式,发挥更强大的作用。
2025-03-06
现阶段AI应用软件有哪些好用的
以下是一些好用的现阶段 AI 应用软件: AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,可分析音乐的情感表达,市场规模达数亿美元。 AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 AI 金融风险预警平台:采用数据分析、机器学习技术,有金融风险预警软件,能提前预警金融风险,市场规模达数十亿美元。 AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,可根据用户需求优化旅游路线,市场规模达数亿美元。 AI 儿童安全座椅推荐系统:通过数据分析、机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅,市场规模达数亿美元。 AI 汽车保养套餐推荐系统:利用数据分析、机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐,市场规模达数十亿美元。 AI 物流快递柜管理系统:基于数据分析、物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率,市场规模达数十亿美元。 AI 招聘面试模拟平台:运用自然语言处理、机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟,市场规模达数亿美元。 AI 房地产装修设计平台:借助图像生成、机器学习,如酷家乐装修设计软件,为用户提供装修设计方案,市场规模达数十亿美元。 AI 游戏道具推荐系统:通过数据分析、机器学习,如游戏内商城推荐功能,根据玩家需求推荐游戏道具,市场规模达数亿美元。 AI 天气预报分时服务:采用数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 AI 医疗病历分析平台:利用数据分析、自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断,市场规模达数十亿美元。 AI 会议发言总结工具:借助自然语言处理、机器学习,如讯飞听见会议总结功能,自动总结会议发言内容,市场规模达数亿美元。 AI 书法作品临摹辅助工具:通过图像识别、数据分析,如书法临摹软件,帮助书法爱好者进行临摹,市场规模达数亿美元。
2025-03-03
现阶段AI应用有哪些
现阶段 AI 应用主要包括以下方面: 1. AI 视频生成: 专业创作者(艺术家、影视人等):能够为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向。 自媒体、非专业创作者:解决视频剪辑痛点,如快速生成脚本分镜、视频,将文章高效转 PPT 再转视频,解决同一素材在不同平台分发的成本问题。 企业客户:为小企业、非盈利机构大幅缩减视频制作成本。 2. 交通领域: 自动驾驶:提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 3. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,从使用场景来看,还包括改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 等方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区等。目前产品大多分布在 PC 端。
2025-03-03
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21