DeepSeek 的优势包括以下方面:
🔔Xiaohu.AI日报「1月27日」✨✨✨✨✨✨✨✨1⃣️💹华尔街分析师对DeepSeek的反应:DeepSeek展示出媲美领先AI产品性能的模型,但成本仅为其一小部分,在全球主要市场的App Store登顶。Jefferies警告其技术可能打破资本开支狂热,Citi对其技术突破提出质疑。高盛预测其可能改变科技巨头与初创公司的竞争格局,降低AI行业进入门槛。🔗[https://www.xiaohu.ai/c/xiaohu-ai/deepseek](https://www.xiaohu.ai/c/xiaohu-ai/deepseek)2⃣️📝DeepSeek的实际使用体验:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化,表现不错;编程能力略逊于GPT,据用户反馈。GRPO算法替代传统PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。🔗[https://x.com/imxiaohu/status/1883843200756170873](https://x.com/imxiaohu/status/1883843200756170873)🔗[https://www.xiaohu.ai/c/ai/grpo-deepseek-r1-8c6cff0c-deb8-4937-a419-7066af987e43](https://www.xiaohu.ai/c/ai/grpo-deepseek-r1-8c6cff0c-deb8-4937-a419-7066af987e43)3⃣️🎙️复旦大学OpenMOSS发布实时语音交互模型:
[技术报告解读](https://waytoagi.feishu.cn/wiki/ZXnkwKXr8ipW2YkgFTKcxlXpnHc)[DeepSeek_R1.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/STbLbIvl9oAUAgxYgE3c1lpUnoe?allow_redirect=1)[DeepSeek_V3.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/GdOObWZP4ovWezxuYIjc0UtQnZd?allow_redirect=1)[heading1]使用技巧[content]先了解下优势和特点[heading2]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。更多提示词技巧请查看[集合·DeepSeek提示词方法论](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf)
《[一场关于DeepSeek的高质量闭门会:“比技术更重要的是愿景”](https://mp.weixin.qq.com/s/cXafYIotJUGUmWasXrJvcw)》DeepSeek以“比技术更重要的是愿景”引发全球AI热潮,其创始人梁文锋强调团队文化与长远智能探索。讨论会上指出,DeepSeek在技术上虽有优势,但资源有限,需聚焦核心;其推理模型推动效率提升,挑战传统SFT方法,标志着新的模型训练范式。DeepSeek不仅是低成本的开源项目,更是推动AI进步的力量。正如Marc Andreessen所言:“作为开源项目,这是对世界的一份深远馈赠。”《[DeepSeek再度开源:用Janus-Pro撕开算力铁幕](https://mp.weixin.qq.com/s/Sy9zG7nL7S8eSDzxH5LqSg)》DeepSeek近日开源了多模态模型Janus-Pro,寓意古罗马双面神雅努斯,既能进行视觉理解,也能生成图像。与DALL-E 3相比,Janus-Pro在参数上领先,并具备图像识别、地标识别等多种能力。该模型通过更优化的训练策略、更海量的数据和更大规模的参数(70亿)实现了更强的智能表现。正如文章所言:“以开源筑长阶,邀世界共赴星辰。”《[DeepSeek深夜发布大一统模型Janus-Pro将图像理解和生成统一在一个模型中](https://waytoagi.feishu.cn/wiki/SneLwRmsYiUaI6kvxltcEBPPnhb)》1.统一Transformer架构,使用同一个模型就能完成图片理解,图片生成2.提供1B和7B两种规模,适配多元应用场景3.全面开源,支持商用,MIT协议,部署使用便捷4.Benchmark表现优异,能力更全面