Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?

Answer

RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解:

RAG 工作流程:

  1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。
  2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。
  3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。

RAG 类似于一个超级智能的图书馆员,综合起来:

  1. 检索:从庞大知识库中找到相关信息。
  2. 增强:筛选优化确保找到最相关部分。
  3. 生成:整合信息给出连贯回答。

RAG 的优势:

  1. 成本效益:相比训练和维护大型专有模型,实现成本更低。
  2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。
  3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。

RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。

在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。

同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。

Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

这里我们先不讨论技术原理,我们可以通过“RAG”的名字来通俗易懂地解释一下检索增强生成R:Retrieval(检索)想象一下,当你在一个图书馆里寻找一本关于某个主题的书。图书馆员会先根据你的描述,从书架上找出一些相关的书籍和文章。这就是RAG中的“检索”部分。在这个步骤中,系统会从知识库或文档集合中找到与用户问题相关的内容。A:Augmented(增强)接下来,图书馆员会打开那些找出来的书籍和文章,挑选出最相关的段落和信息,并把它们汇总起来。这就是“增强”部分。这里,大模型会把检索到的信息进行筛选和优化,确保最相关和最有用的信息被选中。G:Generation(生成)最后,图书馆员会把汇总的信息组织成一个连贯的、易于理解的回答,用通俗易懂的语言告诉你。这就是“生成”部分。在这一阶段,大模型将整合的信息生成一个自然流畅的回答,像是一个专家在直接回答你的问题。综合解释RAG就像是一个超级智能的图书馆员:1.检索:它会从庞大的知识库中找到与你问题相关的信息。2.增强:它会筛选和优化这些信息,确保找到的是最相关的部分。3.生成:它会把这些信息整合起来,用通俗易懂的语言给出一个连贯的回答了解了RAG的基本概念,他的优缺点也就显而易见啦!优点:成本效益:相比训练和维护一个大型专有模型,RAG的实现成本更低灵活性:RAG可以利用多种数据源,包括结构化数据和非结构化数据。它能迅速适应不同领域和变化的数据可扩展性:可以随时增加或更新知识库中的内容,而不需要重新训练模型缺点:相比于专有模型的方案,他的回答准确性不够

张翼然:AI引领未来课堂的探索与实践.pdf

图书馆员根据你的描述,从庞⼤的知识库中找到与你问题相关的信息。Augmented-增强:它会筛选和优化这些信息,确保找到的是最相关的段落和信息。Generation-⽣成:它会把这些信息整合起来,⽤通俗易懂的语⾔给出一个连贯的回答。在不改变⼤模型本⾝的基础上,通过外挂知识库等⽅式,为模型提供特定领域的数据信息输⼊,让模型能基于特定的数据⽣成内容、降低幻觉,实现对该内容更准确的信息检索和⽣成优点:•成本效益:相⽐训练和维护一个⼤型专有模型,RAG的实现成本更低•灵活性:RAG可以利⽤多种数据源,包括结构化数据和⾮结构化数据。它能迅速适应不同领域和变化的数据•可扩展性:可以随时增加或更新知识库中的内容,⽽不需要重新训练模型缺点:•相⽐于专有模型的⽅案,他的回答准确性不够AI搜索引擎,也是⼤语⾔模型的搜索结果RAG1.1.Metaso.cn:学术、研究2.2.So.360.com:⽣活、便捷3.3.Devv.ai:程序员、开发者4.4.Perplexity:付费、⾼质量5.5.Bing.com:通⽤6.6.Google.com:全球、精准7.7.Perplexity:付费、⾼质量规范的⽂献引⽤(但不全)适合快速了解

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

Others are asking
ragflow
RAGflow 能力拆解: 文档拆分方式: 通用模式:主要参考每个块的 token 数量,同时考虑语意完整性,切分段落点通常在句号或叹号等完整句子结束处。拆分结果和 langchain 的拆分大同小异。 Q&A 问答对:将左边内容加上“问题:”,右边内容加上“回答:”,数据清洗工作量大。 简历:解析容易失败,需要匹配关键词才能解析,建议官方给出简历模板。 手册:一整段文字提取,分割处在页面分页、段落分段处,块大小通常较大。 表格:拆分后每一行被当成一个块,第一行表头插入到每一块头部。对没有特殊字符的表格信息处理较好,对图片内的公式做了 OCR 检测。 数据清洗:RAGflow 提供分段后的数据处理,可自行添加、修改数据或添加标签。测试发现,RAGflow 召回会同时使用向量相似度和关键词相似度并加权得到混合相似度,关键词相似度不仅匹配文本段内容还匹配关键词标签内容,单个实体在关键词中出现即为 100%。但需注意,检索获得的内容块需同时包含“问题信息”和“答案信息”,大模型才能解答。此外,RAGflow 没提供对外接口,做聊天或其他应用时不方便。 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式:基于模块化RAG 的相关工作,本文将从典型的 RAG Flow 模式、特定的 RAG 流实现以及最佳的行业案例三个方面深入探讨 RAG Flow 的设计思路,在典型的 RAG Flow 模式方面,将介绍 3 种微调阶段模式和 4 种推理阶段模式。
2025-03-19
ragflow
RAGflow 的能力拆解包括以下方面: 文档拆分方式: 通用模式:主要参考每个块的 token 数量,同时考虑语意完整性,切分段落点通常在句号或叹号等完整句子结束处,拆分结果和 langchain 大同小异。 Q&A 问答对:将左边内容加上“问题:”,右边内容加上“回答:”,数据清洗工作量大。 简历:格式不可控,解析易失败,建议官方给出模板。 手册:一整段文字提取,分割处在页面分页、段落分段处,块大小通常较大。 表格:拆分后每一行被当成一个块,第一行表头插入到每一块头部。 数据清洗:RAGflow 提供分段后的数据处理,可自行添加、修改数据及添加标签。测试中添加特定术语和数据并进行召回测试,发现数据正确召回但大模型可能因上下文问题无法匹配。结论包括:RAGflow 召回同时使用向量相似度和关键词相似度并加权得到混合相似度;关键词相似度不仅匹配文本段内容还匹配标签内容;关键词相似度单个实体出现即为 100%;检索内容需同时包含“问题信息”和“答案信息”大模型才能解答;RAGflow 未提供对外接口,应用不便。 此外,还有关于大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式的相关内容,如在模块化 RAG 范式下探讨 RAG Flow 的设计思路,包括典型的 RAG Flow 模式、特定的 RAG 流实现以及最佳的行业案例,在典型的 RAG Flow 模式方面介绍了微调阶段模式和推理阶段模式等。
2025-03-18
ragflow
RAGflow 能力拆解: 文档拆分方式: 通用模式:主要参考每个块的 token 数量,同时考虑语意完整性,切分段落点通常在句号或叹号等完整句子结束处。拆分结果和 langchain 的拆分大同小异。 Q&A 问答对:将左边内容加上“问题:”,右边内容加上“回答:”组成一个 block,数据清洗工作量大。 简历:解析容易失败,需要匹配关键词才能解析,建议官方给出简历模板。 手册:一整段文字提取,分割处在页面分页、段落分段处,块大小通常较大。 表格:拆分后每一行被当成一个块,第一行的表头插入到每一块头部。对没有特殊字符的表格信息处理较好,对图片内的公式做了 OCR 检测。 数据清洗:RAGflow 提供分段后的数据处理,可自行添加、修改数据或为数据加标签。测试发现,RAGflow 召回会同时使用向量相似度和关键词相似度并加权得到混合相似度,关键词相似度不仅匹配文本段内容还匹配关键词标签内容,单个实体在关键词中出现即为 100%。但需注意,检索获得的内容块需同时包含“问题信息”和“答案信息”,大模型才能解答。此外,RAGflow 没提供对外接口,做聊天或其他应用时不方便。 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式:基于模块化RAG 自定义 RAG Flow 原创作者为刘焕勇,发表于 2024 年 1 月 29 日北京。在上一篇文章中介绍了模块化RAG 的相关工作,本文将从三个方面深入探讨 RAG Flow 的设计思路,分别是典型的 RAG Flow 模式、特定的 RAG 流实现以及最佳的行业案例。在典型的 RAG Flow 模式方面,将介绍 3 种微调阶段模式和 4 种推理阶段模式。
2025-02-26
ragflow
RAGflow 能力拆解: 文档拆分方式: 通用模式:主要参考每个块的 token 数量,同时考虑语意完整性,切分段落点通常在句号或叹号等完整句子结束处。拆分结果和 langchain 的拆分大同小异。 Q&A 问答对:将左边内容加上“问题:”,右边内容加上“回答:”,数据清洗工作量大。 简历:解析容易失败,需要匹配关键词才能解析,建议官方给出简历模板。 手册:一整段文字提取,分割处在页面分页、段落分段处,块大小通常较大。 表格:拆分后每一行被当成一个块,第一行的表头插入到每一块头部。对没有特殊字符的表格信息处理较好,对图片内的公式做了 OCR 检测。 数据清洗:RAGflow 提供分段后的数据处理,可自行添加、修改数据或为数据加标签。测试发现,RAGflow 召回会同时使用向量相似度和关键词相似度并加权得到混合相似度,关键词相似度不仅匹配文本段内容还匹配关键词标签内容,单个实体在关键词中出现即为 100%。需要在检索获得的内容块中同时包含“问题信息”和“答案信息”,大模型才能解答。RAGflow 没提供对外接口,做聊天或其他应用时不方便。 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式:基于模块化RAG 自定义 RAG Flow: 原创刘焕勇老刘说 NLP 于 2024 年 1 月 29 日 18:31 发表于北京。在上一篇文章中介绍了模块化RAG 的相关工作,重点论述了每个模块中的构成细节。本文将从三个方面深入探讨 RAG Flow 的设计思路,分别是典型的 RAG Flow 模式、特定的 RAG 流实现以及最佳的行业案例。在典型的 RAG Flow 模式方面,将介绍 3 种微调阶段模式和 4 种推理阶段模式供大家参考思考。
2025-02-22
有什么类似于 ragflow,dify 可以本地部署的
Dify 是一个开源的大模型应用开发平台,它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。其具有强大的工作流构建工具,支持广泛的模型集成,提供功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。此外,允许用户定义 Agent 智能体,并通过 LLMOps 功能持续监控和优化应用程序性能。Dify 提供云服务和本地部署选项,满足不同需求,其开源特性确保对数据的完全控制和快速产品迭代。Dify 的设计理念注重简单、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。无论是创业团队构建 MVP、企业集成 LLM 增强现有应用能力,还是技术爱好者探索 LLM 潜力,Dify 都提供相应支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2024-08-30
推荐 GraphRAG 的学习文档
以下是为您推荐的 GraphRAG 学习文档: 1. ,其中包含 GraphRAG 相关内容。 2. ,涉及 GraphRAG 内容。 3. ,有关于 GraphRAG 的介绍。 4. ,包含 GraphRAG 相关内容。 5. ,通俗易懂地介绍了 GraphRAG 的原理、与传统 RAG 的区别、GraphRAG 的优势、知识图谱的创建和利用知识图谱工作。
2024-12-24
GraphRAG 相关论文
以下是关于 GraphRAG 的相关论文信息: 在社区摘要应用中,GraphRAG 在全面性和多样性上以 70 80%的胜率大幅领先于传统 RAG。GraphRAG 是一种基于图的 RAG 工具,能够通过 LLM 从文档集合中自动提取丰富的知识图谱,有助于处理私有或未知数据集的问答。它可以通过检测图中的“社区”(即密集连接的节点群组),从高层主题到低层话题,层次化地划分数据的语义结构。并且能利用 LLM 为这些社区生成摘要,提供对数据集的全面概览,无需事先设定问题,尤其适合回答全局性问题。 微软前几天发布的 GraphRAG 架构非常厉害,但是具体的原理和内容可能不太好理解。Neo4j 的 CTO 写了一篇详细的文章《GraphRAG 宣言:为 GenAI 增加知识》,通俗易懂地介绍了 GraphRAG 的原理、与传统 RAG 的区别、GraphRAG 的优势、知识图谱的创建和利用知识图谱工作。
2024-07-15
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici🦾在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
最近很火的古人怼人视频怎么做的
制作最近很火的古人怼人视频,可按照以下步骤进行: 1. 文案生成 工具:DeepSeek 操作: 打开 DeepSeek 网站:https://chat.deepseek.com/ 输入提示词,示例:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’” 可以根据自己的内容自行调整文案和字数要求。 点击生成,等待 DeepSeek 输出 3 条文案。 从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 可以用现有的照片或者图片,也可以用工具生成。 工具:即梦 AI 操作: 打开即梦 AI 网站:https://jimeng.jianying.com/aitool/image/generate 输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词 调整生成参数(如风格、细节等),点击生成。 预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。 下载最终的人物形象图。 此外,还有以下扩展玩法和变现玩法: 扩展玩法: 1. 文旅引流版:用地方历史名人“骂”现代游客,再顺便夸家乡美景。 2. 名人认知刷新版:让古人吐槽他们被误解的形象。 3. 系列化挑战:做一个“古人骂遍现代生活”系列,吸引粉丝追更。还能号召网友提建议,互动拉满! 变现玩法: 1. 品牌合作与广告植入:让古人吐槽现代生活痛点,顺势植入品牌产品或服务,打造新颖幽默的广告形式。 2. IP 开发与周边销售:基于古人形象开发文化衍生品,打造可销售的 IP 周边。 3. 教育与文化传播:将吐槽视频融入历史文化知识,吸引学生和文化爱好者。
2025-03-30
目前法律的大模型做的做好的产品是什么?
目前在法律大模型领域,以下是一些做得较好的产品: 1. 麦伽智能:是清华大学互联网司法研究院的成果转化伙伴,合作开发了 LegalOne 法律大模型。基于此模型研发了精准语义检索平台、法律咨询系统、审判辅助系统等多款产品,并在上海、山东、苏州、深圳、成都等地开展试点应用。 2. ChatLaw:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来),ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升)等。 3. 行云:规划推出两款产品,有助于解决大模型芯片成本问题,降低对昂贵的英伟达高端显卡依赖。
2025-03-11
sd是哪位大佬做的
SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,于 2022 年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC 。 此外,还有与 SD 相关的 Fooocus,它使用的是最新推出的 SDXL 1.0 模型,对 stable diffusion 和 Midjourney 做了结合升级。保留了 SD 的开源属性,可以部署到本地免费使用,在操作界面吸取了 Midjourney 简洁的特点,省去了 WebUI 中复杂的参数调节,让用户可以专注于提示和图像。配置要求为本地部署,需要不低于 8GB 的内存和 4GB 的英伟达显卡。Fooocus 介绍/安装包下载:https://github.com/lllyasviel/Fooocus 。 另外,在 Video Battle 视频挑战中,有一种方法是使用 SD 的分支版本 CONTROLNET 大佬开发的 Forge,特点是支持图生视频、图生 SD,而且对低端显卡支持良好。下载链接为:https://github.com/lllyasviel/stablediffusionwebuiforge/releases/download/latest/webui_forge_cu121_torch21.7z ,解压后,优先运行 update.bat 进行升级,然后再运行 run.bat ,接着就打开了和 SD 基本一模一样的界面。核心区别在于 FORGE 增加了 2 个王炸功能,SVD【图生视频】和 Z123【图生 3D】。
2025-03-06
怎么分辨那些事中国公司做的ai软件
要分辨哪些是中国公司做的 AI 软件,可以通过以下几个方面: 1. 查看相关的月度榜单,例如“AI 智库|月度榜单”,其中会明确列出公司所属的国家。 2. 关注公司的注册地和总部所在地信息。 3. 了解公司的创始人或 CEO 的国籍背景。 例如,在提供的榜单中,爱思软件、看见概念、尽微致广、同花顺、小冰公司、网易、恒图科技、生数科技、西湖心辰、网旭科技、秘塔网络、回响科技、稿定科技、ANSWER AI、奇点星宇等都是中国公司。
2025-03-05
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20