RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解:
RAG 工作流程:
RAG 类似于一个超级智能的图书馆员,综合起来:
RAG 的优势:
RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。
在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。
同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
这里我们先不讨论技术原理,我们可以通过“RAG”的名字来通俗易懂地解释一下检索增强生成R:Retrieval(检索)想象一下,当你在一个图书馆里寻找一本关于某个主题的书。图书馆员会先根据你的描述,从书架上找出一些相关的书籍和文章。这就是RAG中的“检索”部分。在这个步骤中,系统会从知识库或文档集合中找到与用户问题相关的内容。A:Augmented(增强)接下来,图书馆员会打开那些找出来的书籍和文章,挑选出最相关的段落和信息,并把它们汇总起来。这就是“增强”部分。这里,大模型会把检索到的信息进行筛选和优化,确保最相关和最有用的信息被选中。G:Generation(生成)最后,图书馆员会把汇总的信息组织成一个连贯的、易于理解的回答,用通俗易懂的语言告诉你。这就是“生成”部分。在这一阶段,大模型将整合的信息生成一个自然流畅的回答,像是一个专家在直接回答你的问题。综合解释RAG就像是一个超级智能的图书馆员:1.检索:它会从庞大的知识库中找到与你问题相关的信息。2.增强:它会筛选和优化这些信息,确保找到的是最相关的部分。3.生成:它会把这些信息整合起来,用通俗易懂的语言给出一个连贯的回答了解了RAG的基本概念,他的优缺点也就显而易见啦!优点:成本效益:相比训练和维护一个大型专有模型,RAG的实现成本更低灵活性:RAG可以利用多种数据源,包括结构化数据和非结构化数据。它能迅速适应不同领域和变化的数据可扩展性:可以随时增加或更新知识库中的内容,而不需要重新训练模型缺点:相比于专有模型的方案,他的回答准确性不够
图书馆员根据你的描述,从庞⼤的知识库中找到与你问题相关的信息。Augmented-增强:它会筛选和优化这些信息,确保找到的是最相关的段落和信息。Generation-⽣成:它会把这些信息整合起来,⽤通俗易懂的语⾔给出一个连贯的回答。在不改变⼤模型本⾝的基础上,通过外挂知识库等⽅式,为模型提供特定领域的数据信息输⼊,让模型能基于特定的数据⽣成内容、降低幻觉,实现对该内容更准确的信息检索和⽣成优点:•成本效益:相⽐训练和维护一个⼤型专有模型,RAG的实现成本更低•灵活性:RAG可以利⽤多种数据源,包括结构化数据和⾮结构化数据。它能迅速适应不同领域和变化的数据•可扩展性:可以随时增加或更新知识库中的内容,⽽不需要重新训练模型缺点:•相⽐于专有模型的⽅案,他的回答准确性不够AI搜索引擎,也是⼤语⾔模型的搜索结果RAG1.1.Metaso.cn:学术、研究2.2.So.360.com:⽣活、便捷3.3.Devv.ai:程序员、开发者4.4.Perplexity:付费、⾼质量5.5.Bing.com:通⽤6.6.Google.com:全球、精准7.7.Perplexity:付费、⾼质量规范的⽂献引⽤(但不全)适合快速了解
大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)