Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

工作流中如何调用插件

Answer

在工作流中调用插件的方式如下:

  1. 触发器触发:
    • 为 Bot 设置触发器,可选择定时触发或事件触发。
    • 触发时执行任务的方式包括 Bot 提示词、调用插件、调用工作流。
    • 调用插件时,需为触发器添加一个插件,触发后 Bot 会调用该插件获取返回结果并发送给用户。
    • 一个 Bot 内的触发器最多可添加 10 个,且仅当 Bot 发布飞书时生效。
  2. 在 Bot 内使用插件:
    • 在 Bots 页面,选择指定 Bot 并进入 Bot 编排页面。
    • 在 Bot 编排页面的插件区域,单击加号图标添加插件,或者单击自动添加图标,让大语言模型自动添加适用的插件。使用大语言模型自动添加插件后,需检查被添加的插件是否可以正常使用。
    • 在添加插件页面,展开目标插件查看工具,然后单击添加。单击我的工具,可查看当前团队下可用的插件。
    • 在 Bot 的人设与回复逻辑区域,定义何时使用插件,然后在预览与调试区域测试插件功能是否符合预期。
  3. 在工作流中使用插件节点:
    • 在页面顶部进入工作流页面,然后创建工作流或选择一个已创建的工作流。
    • 在页面左侧,单击插件页签。
    • 搜索并选择插件,然后单击加号图标。
    • 在工作流的画布内,连接插件节点,并配置插件的输入和输出。

需要注意的是,即使是官方插件也可能存在不稳定的情况,需要自己去尝试,找到适合当前场景的插件。

Content generated by AI large model, please carefully verify (powered by aily)

References

触发器

您可以为Bot设置触发器(Triggers),使Bot在特定时间或接收到特定事件时自动执行任务。Bot可配置的触发器类型如下,您可以根据实际需要选择适用的触发器。定时触发(Scheduled trigger):让Bot在指定时间执行任务,无需编写任何代码。事件触发(Event trigger):触发器会生成Webhook URL,当您的服务端向触发器Webhook URL发送HTTPS请求时,触发任务执行。触发器在触发时,执行任务的方式如下:Bot提示词(Bot prompt):该方式下,您需要通过自然语言设置提示词。后续触发时,提示词会自动发送给Bot,Bot根据提示词向用户发送提醒消息。例如,为一个生活提醒机器人设置该触发器,提示词为每周一早上7:00提醒用户做有氧运动。调用插件(Plugin):该方式下,您需要为触发器添加一个插件。后续触发时,Bot会调用该插件获取返回结果并发送给用户。例如,您可以添加一个查询天气的插件,当触发后向用户发送指定地点的天气信息。调用工作流(Workflow):该方式下,您需要为触发器添加一个工作流。如果工作流有输入参数,则需要传入参数值。后续触发时,Bot会调用该工作流获取返回结果并发送给用户。例如,您可以添加一个审批工作流,当触发后执行工作流完成业务审批。此外,Coze支持用户在与Bot聊天时设置定时任务。如下所示,当用户在会话内点击推荐任务后,Bot将会确认并创建定时任务。[heading1]使用限制[content]一个Bot内的触发器最多可添加10个。触发器仅当Bot发布飞书时生效。

使用插件

插件可以直接在Bot内使用,拓展Bot的能力边界。插件也可以作为节点添加到工作流,执行一个操作。此外,插件本身提供了一些能力用于提升您的开发体验与效率。[heading1]在Bot内使用插件[content]您可以将插件添加到Bot内,扩展Bot的能力。1.在Bots页面,选择指定Bot并进入Bot编排页面。2.在Bot编排页面的插件区域,单击加号图标添加插件,或者单击自动添加图标,让大语言模型自动添加适用的插件。使用大语言模型自动添加插件后,您需要检查被添加的插件是否可以正常使用。1.在添加插件页面,展开目标插件查看工具,然后单击添加。单击我的工具,可查看当前团队下可用的插件。1.在Bot的人设与回复逻辑区域,定义何时使用插件,然后在预览与调试区域测试插件功能是否符合预期。[heading1]在工作流中使用插件节点[content]1.在页面顶部进入工作流页面,然后创建工作流或选择一个已创建的工作流。2.在页面左侧,单击插件页签。3.搜索并选择插件,然后单击加号图标。4.在工作流的画布内,连接插件节点,并配置插件的输入和输出。

大雨:coze工作流节点大全

在Coze的工作流中,节点是构成工作流的基本单元。每个节点代表一个特定的功能或操作。下面,我们来详细了解各类节点的功能和配置方法。[heading2]开始节点:[content]定义工作流的输入参数,是工作流的起点。[heading2]结束节点:[content]设置工作流的输出内容,是工作流的终点。节点命名建议,含义在前,类型不加也可以。比如一个大语言模型节点,目的是为了方便选择的是看的清,同类节点不会选错。[heading2]插件[content]通过插件扩展大语言模型本身的限制。用于调用外部插件,实现特定功能。例如,可以使用插件节点抓取网页内容。调用加入智能体以后,调用的次数,比如A插件被加入智能体B,我们使用了6次,就是6.引用就是被其他工作流或者智能体使用,比如A插件加入智能体,A插件的引用就是1.运行耗时平均耗时,如果很长,增加失败概率,也容易造成整个工作流运行超时成功率如果成功率不高,调用次数也不高,就有点尴尬了即使官方插件也会有不稳定的情况,需要自己去尝试,找到适合当前场景的插件。

Others are asking
coze插件说明器
Coze 插件相关说明如下: Coze 工作流节点: 节点是构成工作流的基本单元,每个节点代表特定功能或操作。 开始节点定义工作流输入参数,是起点;结束节点设置工作流输出内容,是终点。 节点命名建议含义在前,类型不加也可,要清晰以便选择。 插件可扩展大语言模型本身限制,用于调用外部插件实现特定功能,如抓取网页内容。 调用指加入智能体后的使用次数。 引用指被其他工作流或智能体使用的情况。 运行耗时包括平均耗时,过长会增加失败概率和导致工作流超时。 成功率不高且调用次数低会比较尴尬,即使官方插件也可能不稳定,需自行尝试找到适合场景的插件。 使用 Coze IDE 创建插件: 登录。 在左侧导航栏工作区区域选择进入指定团队。 在页面顶部进入插件页面或在某一 Bot 的编排页面找到插件区域并单击“+”图标。 单击创建插件。 在新建插件对话框,配置插件图标(可选)、名称、描述、工具创建方式、IDE 运行时等信息并单击确认。 在插件详情页单击在 IDE 中创建工具,在弹出对话框设置工具名称和介绍后确定,跳转到 Coze IDE 页面进行编码。 (可选)在 IDE 左上角工具列表区域单击“+”图标添加更多工具,还可通过单击工具的设置图标编辑、删除或重置代码。 (可选)在 IDE 左下角依赖包区域管理依赖包,所有工具共用该依赖列表。 插件系统与 AI Agent 的关系: AI Agent = LLM + Planning + Memory + Tools,插件系统对应 Tools,主要目的是扩展 Bot 的能力边界。 插件是工具集,一个插件内可包含一个或多个工具(API)。 Coze 集成了超过 60 种类型的插件,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型。 若 Coze 集成的插件不满足需求,可创建自定义插件集成所需 API。
2025-01-11
coze插件有多少个
Coze 插件种类丰富,涵盖了从基础的文本处理到高级的机器学习功能,以及众多便民服务领域。包括文本分析、情感分析、自然语言处理(NLP)、图像识别、语音识别、数据分析等插件,还有新闻资讯(如头条新闻)、天气预报(如墨迹天气)、出行必备(如飞常准、猫途鹰)、生活便利(如快递查询助手、食物大师、懂车帝、幸福里、猎聘)等插件。其数量和种类不断增加,以适应技术趋势和市场需求。具体可参考 Coze 国内版本:https://www.coze.cn/store/plugin 。
2025-01-11
coze插件说明
在 Coze 的工作流中,节点是构成工作流的基本单元,每个节点代表特定功能或操作。 开始节点定义工作流的输入参数,是起点;结束节点设置工作流的输出内容,是终点。节点命名建议含义在前,类型不加也可,以便清晰选择。 插件用于扩展大语言模型本身的限制,调用外部插件可实现特定功能,如抓取网页内容。加入智能体后有调用次数和引用的概念。运行耗时和成功率也需关注,平均耗时长会增加失败概率和工作流超时风险,成功率不高且调用次数低则不理想。即使官方插件也可能不稳定,需自行尝试找到适合场景的插件。 AI Agent = LLM + Planning + Memory + Tools,插件系统对应 Tools,主要目的是扩展 Bot 的能力边界。插件是一个工具集,一个插件内可包含一个或多个工具(API)。 Coze 集成了超过 60 种类型的插件,涵盖搜索引擎、文本分析、图像识别等领域,包括必应搜索、LinkReader、知乎热榜等,国内版本还提供便民服务,如新闻资讯、天气预报、出行必备、生活便利等方面的插件。若集成的插件不满足需求,还可创建自定义插件来集成所需的 API。
2025-01-11
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
怎么看sd的插件不兼容
SD 插件不兼容可能有多种情况和解决方法: 对于提示词服从度增强插件,当生成图与提示词不太相符时,可以通过多刷图来找到符合需求的绘图。若条件太多始终达不到效果,可提高 cfg 值并启用修复插件。但开启插件并提高 CFG 值后,画面可能会发黄,颜色偏差可利用 PS 做后续调整。安装方式可以在扩展列表中搜索插件名字,或放在特定路径文件夹下,安装完成后重启 webUI 即可启用。 对于无需 Lora 的一键换脸插件 Roop,安装时间较长,需耐心等待。安装过程包括在特定文件夹地址栏输入“cmd”回车,在打开的 dos 界面粘贴代码安装 insightface。若出现错误,可下载最新秋叶 4.2 整合包。安装完成后重新打开启动器,后台会继续下载模型,需全程科学上网。使用时要注意参数设置,人脸像素可能偏低,可发送到“图生图”并使用 controlnet 中的 tile 模型重绘。此插件谨慎使用,切勿触犯法律。获取插件可添加公众号【白马与少年】回复【SD】。
2025-01-02
智谱AI插件在哪儿调用
智谱 AI 插件的调用方式如下: 针对智谱,重复类似操作,调用的是 https://chatglm.cn/chatglm/backendapi/v1/conversation/recommendation/list 接口。这里只用到了 conversation_id 一个字段,用的是 GET 请求。通过此接口返回问题,参数用的是整轮对话窗口的唯一 Id:66c01d81667a2ddb444ff878 。 打开飞书多维表格,新增列时,您可以选择字段捷径,在字段捷径的 AI 中心,找到智谱 AI 的字段插件。智谱 AI 近期发布了 3 个飞书多维表格的字段插件:AI 内容生成、AI 视频生成和 AI 数据分析。 在微信超级 AI 知识助手教学(上)—智谱共学营智能纪要中,有智谱大语言模型的使用与功能介绍,包括角色扮演模型设置、变量插入方法、插件调用情况等。还提到了智浦轻颜的功能与应用,如文章总结功能、视频生成功能、画图功能等,以及多维表格相关内容。
2025-01-02
coze工作流中数据库如何应用?主要是返回数据
在 Coze 工作流中,数据库的应用如下: 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。 数据库节点的输入:用户可以定义多个输入参数。 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
2025-01-08
在 COMFY UI 中,关于 Tile 平铺预处理器怎么工作流中怎么使用
在 ComfyUI 中,关于 Tile 平铺预处理器的使用方法如下: 1. 平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的 GPU 内存下处理高分辨率视频。 tile_sample_min_height:96,最小平铺高度。 tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。 tile_overlap_factor_height:0.083,高度方向的重叠因子。 tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。 enable_vae_tiling:设置为 false,表示不启用 VAE(变分自编码器)的图像平铺。 enable_vae_slicing:设置为 false,表示不启用 VAE 切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE 切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。 2. 将您的 ComfyUI 更新到最新。 3. 将 clip_l 和 t5xxl_fp16 模型下载到 models/clip 文件夹。确保您的 ComfyUI/models/clip/目录中,有 t5xxl_fp16.safetensors 和 clip_l.safetensors,您可以改用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用量,但如果您的 RAM 超过 32GB,建议使用 fp16。跑过 flux 就有这些模型,没有的话翻之前文章有下载。 4. 在您的 ComfyUI/models/vae/文件夹中,有 ae.safetensors。 5. 将最开始下载的 flux1filldev.safetensors 放于 ComfyUI/models/unet/文件夹中。 6. 使用 flux_inpainting_example 或者 flux_outpainting_example 工作流。
2024-12-26
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
coze工作流中的编辑代码如何使用
在 Coze 工作流中,代码的使用方法如下: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求自定义工作流信息,点击确认后完成工作流的新建。 在编辑视图中,左侧「选择节点」模块中,代码节点支持编写简单的 Python、JS 脚本,对数据进行处理。 按照流程图,在编辑面板中拖入对应的代码节点。 例如在艾木的介绍中,利用“Code”组块插入一段 Python 代码,将 Google 搜索返回结果格式化成两个字符串,一个是由搜索结果相关信息拼接而成,另一个是由搜索出来的网页链接拼接而成。这段代码起到了粘合剂的作用,逻辑不复杂,理论上也可以让 AI 帮助生成。
2024-09-30
国内coze调用api的例子
以下是国内 Coze 调用 API 的一些例子: 1. 通过已有服务 API 创建插件: 进入 Coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 2. 手捏简单的 Bot 并接入创建的插件:创建测试 API 的 Bot,将创建的 api_1 插件接入,在 prompt 里让其调用插件。 3. 测试 AI Bot 时可能遇到的情况:Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定,可能出现回答不完整的情况,但相信官方会尽快解决。 4. 获取 Coze 的 accessToken 和 botid: 获取 accessToken:在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats,添加令牌,设置名称、过期时间和权限,完成后点击确定按钮并复制下拉令牌。 获取 botid:通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮查看地址栏中的数字即为 botid。 发布为 bot api:注意在前端使用 bot 必须发布成为 API,点击发布并选择 API,等待审核通过后可按上述方法拿到 botid。 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-12
如何通过程序代码调用coze的api?
要通过程序代码调用 Coze 的 API,大致步骤如下: 1. 创建一个插件: 填入插件名和插件描述。 选择云侧插件作为创建方式。 选择 Python 作为 IDE 运行时。 点击【在 IDE 中创建工具】。 在创建工具面板里: 填入工具名称。 填入工具介绍。 2. API 接入相关操作: Glif 允许通过 API 调用平台上的应用,API 接入:https://docs.glif.app/api/gettingstarted 。 去创建一个新的 Token 并复制备用。 将自己发布的 glif 链接上的 id 复制备用。 3. 在 Coze 的 IDE 中: 引入依赖和编写 handler 方法。 代码中对应的数据字段在元数据 Tab 中设置: 填写入参字段和描述,对完整链接要写清楚。 填写出参字段。 左侧的依赖包添加【requests】。 填入测试数据运行,测试通过后即可发布。 4. 创建一个 Bot,挂载新创建的插件,在 Prompt 中做一些对入参的校验和约束。 5. 测试从 Coze 调用 Glif 功能跑通,发布 Coze。 另外,获取 Coze 的 accessToken 和 botid 时,需要了解以下内容: 1. OAuth 授权的范围控制: 个人空间:访问个人创建的 bot。 团队空间:可以跨账号授权,比如让其他团队成员访问你创建的 bot。 2. 跨账号授权流程: 用户 A 在用户 B 的团队空间创建了 bot。 用户 A 要使用这个 bot,需要: 先让空间所有者安装这个 OAuth 应用。 然后用户 A 才能获取授权码访问其在该团队空间创建的 bot。 3. OAuth 和 PAT的主要区别: OAuth token 有效期更短,安全性更高。 OAuth 可以实现跨账号的授权。 PAT 只能访问个人的资源。 在 Coze 中用现有服务创建自己的 plugin 时: 1. 进入 Coze,在个人空间中选择插件,新建一个插件,起名并填写描述。 2. 在插件的 URL 部分,填入 Ngrok 随机生成的 https 的链接地址。 3. 配置输出参数。 4. 测试后发布插件。 5. 创建 Bot 并接入创建的插件,在 prompt 中设置调用插件的相关要求。
2025-01-12
如果通过程序调用coze的api?
要通过程序调用 Coze 的 API,您需要以下步骤: 1. 获取 accessToken: 在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats 。 找到“个人访问令牌”,添加令牌。设置令牌的名称和过期时间(最多 1 个月),并选择权限。 完成后点击“确定”按钮,一定要点击按钮复制下拉获取令牌,因为该令牌只会出现一次。 2. 获取 botid: 通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮,查看地址栏中的数字即为 botid。 注意:如果要在前端使用 bot,必须将其发布成为 API,点击发布并选择 API,等审核通过后即可按上述方法拿到 botid。 3. 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制出来。 此外,OAuth 授权的范围控制包括个人空间和团队空间。个人空间可访问个人创建的 bot,团队空间可以跨账号授权。OAuth 和 PAT(个人访问令牌)的主要区别在于 OAuth token 有效期更短、安全性更高且可以实现跨账号授权,而 PAT 只能访问个人的资源。 如果要将 Glif 的功能通过 API 方式接入 Coze,步骤如下: 1. 先创建一个插件: 填入插件名和插件描述。 创建方式选择云侧插件。 IDE 运行时选择 Python,点击【在 IDE 中创建工具】。 在创建工具面板里:填入工具名称和工具介绍。 2. 进行相关设置: 去创建一个新的 Token 并复制备用。 将自己发布的 glif 链接上的 id 复制备用。 在 Coze 的 IDE 中引入依赖(如 requests)和编写 handler 方法。 在代码中对应的数据字段在元数据 Tab 中设置,包括填写入参字段和描述、出参字段等。 3. 填入测试数据运行,测试通过后即可发布。创建一个 Bot,挂载新创建的插件,在 Prompt 中做一些对入参的校验和约束。最后,测试从 Coze 调用 Glif 功能跑通,发布 Coze。
2025-01-12
单轮对话与多轮对话调用
单轮对话与多轮对话调用: 聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息格式化,然后交替使用用户消息和助手消息。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 百炼相关 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢? 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
通过 API 调用大模型
以下是通过 API 调用大模型的相关步骤: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 3. 直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件:需要更改"model",和添加"dashscope_api_key"。 获取 key 的视频教程: 图文教程:以下是参考配置。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 4. 本地部署教学(node.js)小白推荐: 申请大模型的 API 接口: silicon 硅基接口:官方提供的接入 API 的教学文档。以平时使用的 silicon 接口为例,有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用。另赠送 14 元体验金,有效期未知,是个人认为 API 接口最方便最实惠的接口了。silicon 注册和使用地址:邀请码:ESTKPm3J(谢谢支持)。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥。单击密钥即可完成 API 密钥的复制。silicon 支持多种大模型,也支持文生图、图生图、文生视频,可自行探索。这一步得到 silicon 的密钥即可,我们可以调用千问 2.5 的这个模型,满足日常对话完全没有问题,并且是免费调用的。 智普 GLM4 接口:正在 BigModel.cn 上用智谱 API 打造新一代应用服务,通过专属邀请链接注册即可获得额外 GLM4Air 2000 万 Tokens 好友专属福利,期待和您一起在 BigModel 上探索 AGI 时代的应用;链接:https://www.bigmodel.cn/invite?icode=xxcbnybpRLOsZGMNOkqaLnHEaazDlIZGj9HxftzTbt4%3D。进入个人中心,先完成实名认证,再单击左边栏 API KEYS 或右上角的 API 密钥,进入后单击右上角的添加 API,鼠标移至密钥上方,单击复制即可得到智普的 APIkey。这一步做的是注册 silicon 和智普 GLM 的大模型账号,申请 API 密钥,保存密钥,等下配置需要填写。密钥一定要保管好不能公开,否则后果很严重。
2025-01-06
开源模型与闭源模型调用
以下是关于开源模型与闭源模型调用的相关信息: 1. 通义千问自 2023 年 8 月起密集推出 Qwen、Qwen1.5、Qwen2 三代开源模型,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可登录体验其性能或进行对比测评,测评地址为。Compass Arena 集齐了国内主流的 20 多款大模型,用户可在平台选择大模型的两两“对战”。 2. 部分声称性能卓越的中国大模型被揭露为“套壳”产品,如李开复创办的“零一万物”被国外开发者质疑为“套壳”产品,其团队承认在训练过程中沿用了开源架构,但坚称发布的模型从零开始训练并进行了大量原创优化和突破。此外,字节跳动被曝出在其秘密研发的大模型项目中调用了 OpenAI 的 API,并使用 ChatGPT 的输出数据来训练自己的模型,此行为触犯了 OpenAI 使用协议中禁止的条款。 3. 在 LLM 应用程序中,OpenAI 已成为语言模型领域领导者,开发者通常使用 OpenAI API 启动新的 LLM 应用,如 gpt4 或 gpt432k 模型。项目投入生产并规模化时,有更多选择,如切换到 gpt3.5turbo,其比 GPT4 便宜约 50 倍且速度更快;与其他专有供应商如 Anthropic 的 Claude 模型进行实验;将一些请求分流到开源模型,这通常与微调开源基础模型结合更有意义。开源模型有多种推理选项,包括 Hugging Face 和 Replicate 的简单 API 接口、主要云提供商的原始计算资源等。
2025-01-06
扣子工作流教程
以下是一些关于扣子工作流的教程资源: 视频教程: 【Agent 共学第二期】艾木分享|这也许是你一生中第一个 Bot:https://www.bilibili.com/video/BV1XT421i7jH/ 一步一步带你手搓一个 Coze Bot——Dr.Know(极简版 Perplexity):https://www.bilibili.com/video/av1005221752 扣子(coze)系列教程(四):工作流中各节点常用使用方式:https://www.bilibili.com/video/BV1ux4y1J761/ Coze 工作流的手把手教程,让你的 Bot 高质量的处理复杂任务!:https://www.bilibili.com/video/BV1PZ421g7xT/ 微信文章教程: 扣子工作流实战案例教程,手把手教你搭建一个图书管理工作流:https://mp.weixin.qq.com/s/Fh3Vm3EDSzoYVxf91GcMMA 使用扣子 Coze 创建 AI 绘画工作流:https://mp.weixin.qq.com/s/d_6yST8JXKf1Tr6JgBPFg 奶奶也学得会的 AI 工作流,省时省力下班早!:https://mp.weixin.qq.com/s/bXC8DHzs5_OgPh3FtKhJZA 中文 GPTS 使用秘籍,字节扣子 Coze 工作流使用全教程:https://zhuanlan.zhihu.com/p/682108709 Workflow 实践|使用 coze 复现一个 AIGC 信息检索 Bot:https://mp.weixin.qq.com/s/PFgjRq7XcTcqog1gLyFqA AI 自动获取 B 站视频摘要信息:https://mp.weixin.qq.com/s/x8lwvlomhFNLZl__qYuDww 如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法):https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q 飞书社区教程: Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平:https://waytoagi.feishu.cn/wiki/LRskwrJkli3CgkkY06xcC3HanBh?from=from_copylink Stuart:我把 Coze 比赛第一的 bot 拆了教大家:https://waytoagi.feishu.cn/wiki/Qt8Bwgl3PihQNukO7PjcmeuJnJg?from=from_copylink 画小二:用 Coze 工作流制作行业简报:实战案例画小二日报:https://waytoagi.feishu.cn/wiki/HmIhwt1IkiIAzok73rDcgG7fnQg?from=from_copylink 画小二:Coze 工作流之抖音热门视频转小红书图文详细配置:https://waytoagi.feishu.cn/wiki/MV7gw298TiBajFkSrFeceYRMnXc?from=from_copylink 扣子版虚拟女友李思思的思路:https://waytoagi.feishu.cn/wiki/O9M4w66fxiElylkBkCRcP6jLnsg?from=from_copylink 此外,还有关于白嫖 Groq 平台算力并接入扣子工作流的保姆级教程: 此时我们有了代理服务器和 APIKEY,落地使用方式举例: 1. 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,而且可以参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险) 2. 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品可以用来填 APIKEY 调用的场景,此处用沉浸式翻译举例(如果还不知道沉浸式翻译这个超级好用的网页翻译工具的,请访问 https://immersivetranslate.com/自行安装) 3. 接入手机类 APP,比如通过快捷方式接入 Siri(此处卖个关子,留着 728 线下切磋赚积分,希望线下小伙伴来找我) 接入扣子工作流: 1. 扣子工作流的搭建细节本篇不详细叙述,请移步 WaytoAGI 自学。 2. 建立工作流,只需要一个代码节点,如下: Copy 以下代码进入代码节点,其中代码节点的输入引用请自行配置为开始节点的用户输入,输出改为“output”,格式为“string” 测试工作流,保证代码块有正常输出(可以看到此处消耗 0 Tokens,白嫖算力成功,在扣子即将收费之际,后续可能可以派上大用处,代替工作流 LLM 节点) 可以建立一个 Bot,来仅仅调用该工作流,建议不要发布,否则你的 Deno 代理流量可能被其他人用。 其他就可以自行发挥了,接入微信等。
2025-01-14
我平时需要完成调研报告,活动策划等工作,什么AI工具适合我现在的工作
以下是一些适合您完成调研报告和活动策划工作的 AI 工具: 1. Kimi:https://kimi.moonshot.cn/ 2. ChatGPT4o:越智能的大模型输出质量通常会更好。 此外,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,能辅助高效处理信息。智能摘要功能可帮助您快速筛选信息。在工作流方面,您可以尝试使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但建议您先摸清楚自己的日常工作流,再根据每个工作节点线索找到适合自己的工具。
2025-01-14
ComfyUI 万物迁移工作流
ComfyUI BrushNet: 项目链接: 原项目:https://tencentarc.github.io/BrushNet/ 插件地址:https://github.com/kijai/ComfyUIBrushNetWrapper 模型下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 第一次运行会自动下载需要的模型,如果是用的 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet,因环境问题,也可手动下载放在这个文件夹里。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。 工作流:配合 mj 出底图,在底图不变的基础上,添加文字或者图片内容。另外可以使用 GDinoSAm(GroundingDino+Sam),检测和分割底图上的内容,做针对性的修改。 4SeasonYou 工作流副本: 一、加载模型部分(总文件有) 官网下载两个文件。 先点击如图中的左上角部分将加载器展开且选择官网下载好的两个模型,否则将会有以下的问题。 GDino 加载器部分:在链接:处下载以下文件。 然后再次检查自己的文件有没有齐全:在 models 下创建 groundingdino 且配置以下文件命名齐全。同理,sams 也是。对于 groundingdino 和 sams 配置有没有齐全可以使用“抠头发.json”来检验。 然后,接下来很大概率在运行到此节点时会报科学上网的(httpsxxxxx)错误。倘若觉得在此工作流中排除 bug 很慢,不妨使用此网址的工作流(可以直接复制他的 json 内容自己创建一个 txt 文件后粘贴,再改后缀名为 json。)进行操作:。那么就要在尝试稳定的科学上网后重启 UI 跑工作流。
2025-01-14
comfyUI 工作流
ComfyUI 工作流主要包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux),涉及 UNETLoader 加载 flux1dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型、VAELoader 加载 fluxae.sft 等步骤,以及图像放大和细化(SDXL),包括加载 SDXL 模型、放大模型等步骤。 工作流网站: “老牌”workflow 网站 Openart.ai,流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分,网址为 https://openart.ai/workflows/ 。 ComfyWorkflows 网站,支持在线运行工作流,从实际下载量和访问量来看略少于 openart,网址为 https://comfyworkflows.com/cloud 。 Flowt.ai,网址为 https://flowt.ai/community 。 相关介绍: RPA 很早就出现在工作流编排领域,目标是使符合某些适用性标准的基于桌面的业务流程和工作流程实现自动化。 ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,提高了流程的可复用性,降低了时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了一套标准化的 DSL 语言,方便导入导出进行工作流复用。 Large Action Model 采用“通过演示进行模仿”的技术,从用户提供的示例中学习。但 Agentic Workflow 存在使用用户较少、在复杂流程开发上不够稳定可靠等问题,同时提出通过自然语言创建工作流的想法。
2025-01-13
普通人如何学习利用ai,提高工作学习效率,怎么学习及学习顺序是怎样的
以下是为普通人提供的学习利用 AI 以提高工作学习效率的方法及学习顺序: 一、了解 AI 基本概念 首先,建议阅读相关资料,如「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么、其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的一系列课程。特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入,比如一定要掌握提示词的技巧,其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出自己的作品,在知识库中也有很多大家实践后的作品和文章分享,欢迎自己实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。通过对话获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的学习模式,即输入→模仿→自发创造。同时注意,学习资源大多是免费开源的,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习时间可根据自身情况灵活安排,不必有压力,能学多少算多少。
2025-01-12
人工智能赋能教学创新工作坊
以下是关于“智慧课程培育建设暨人工智能赋能教学创新工作坊”的相关信息: 举办时间:2024 年 9 月 20 日—9 月 23 日 举办地点:云南·昆明 举办方:知行教师发展平台 参与人员:苏永康(上海交通大学)、张翼然(湖南农业大学) 相关内容: 工具推荐:Bot.360.com 多模型竞技,选取最佳答案;用 heyGen 定制“数字分身”。 智慧课程设计方面:包括 AI 助力教学设计、生成式 AI 对课件制作与微课生成的变革、学情分析与作业测评中 AI 的引领作用、教育数字化转型中的人机协同创新、数据智能化中 AI 对数据收集与可视化的加速,以及案例分析与实践反馈。 学情分析与作业测评方面:主观题 AI 辅助批改的策略与实践,以及 Q&A AI 助力作业测评的未来想象,并分享了相关案例。 人工智能深度融入教学过程:由张翼然(湖南农业大学教育学院教育技术系副教授,拥有国家教学成果奖、国家级和省级精品在线课程、省级教学竞赛一等奖、省级金课,是苹果认证教师、技术派教师)进行讲解。
2025-01-11