Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ComfyUI中的放大插件

Answer

ComfyUI 中的放大插件相关知识如下:

  • 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readme-ov-file 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 U-Net 中进行低噪声扩散处理)。U-Net 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。
  • 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。
  • Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 Eva-CLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUi NNLatentUpscale潜空间放大

通过使用神经网络对潜在空间进行放大,而无需使用VAE进行解码和编码。此方法比传统的VAE解码和编码快很多,并且质量损失很小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readme-ov-file潜在表示(latent representation)是神经网络处理图像时生成的压缩版本,它包含了图像的主要特征信息。相比于直接处理高分辨率图像,处理潜在表示更快且资源消耗更少。1.生成潜在表示:图像被模型压缩成潜在表示。生成一个低分辨率的图像2.放大潜在表示:利用神经网络对潜在表示进行放大。3.生成高分辨率图像:将放大的潜在图像反馈到稳定扩散U-Net中,进行低噪声扩散处理,从而修复成高分辨率图像。此节点旨在用于一种工作流程中,其中初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散u-net中进行低噪声扩散处理(高分辨率修复)。U-Net是一种特别的神经网络结构,通常用于图像处理,尤其是图像分割。它的工作方式可以简单理解为:1.编码部分:逐步缩小图像,从中提取重要特征(类似于提取图片的精华)。2.解码部分:逐步放大图像,把提取的特征重新组合成高分辨率的图像。3.跳跃连接:在缩小和放大的过程中,保留一些细节信息,使最终生成的图像更清晰。这种结构使得U-Net能够在放大图像的同时,保持细节和准确性。

8月13日ComfyUI共学

[heading2]总结关于图像生成中分辨率和放大方式的讨论不同模型的适合分辨率:SD1.5通用尺寸为512乘512或512乘768,SDXL基础尺寸为1024乘1024,生成图像前要选对尺寸,否则效果差。通过浅空间缩放放大图像:直接对浅空间图片进行编辑放大,然后进行第二次采样和高清处理,若直接放大不解码会很模糊,需用较低的采样系数增加细节。使用外置放大模型放大图像:可使用外置放大模型对图像进行放大,默认放大4倍,可通过resize image节点调整到想要的尺寸,放大后要送回编码器进行采样处理。图像对比节点:图像对比节点名为compare,需安装相关包才能使用,可用于对比最初和最终的图片。算力和资源获取:飞翔提供了50个小时的算力时间,可在飞书群填问卷获取,分享模型较少可提建议,相关文档在飞书和公众号中。AI绘图相关技术与工具的介绍及交流公众号文章包含AGI相关信息:通往AGI之路的公众号最新文章中有相关信息,内置工作流和启动器方便,Mac系统因无CUDA生态不太好用。推荐提示词辅助插件:如SDXL的S1XL style,可对提示词进行风格化扩充,还有能翻译提示词的插件,如沙拉查词、沉浸式翻译等。解释CLIP和CFG的区别:CLIP用于解析提示词,将其转化为模型可理解的向量,CFG是提示词对画面影响的强度,即提示词引导系数。搭建带Lora的图生图工作流:介绍了加载模型、设置clip跳过层、处理图像、连接采样器和解码器等步骤,并展示效果。

Comfyui PuLID人物一致

节点插件PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUImodel:使用预训练的基础文本到图像扩散模型,如Stable Diffusion。pulid:加载的PuLID模型权重,定义ID信息如何插入基础模型。eva_clip:用于从ID参考图像中编码面部特征的Eva-CLIP模型。face_analysis:使用InsightFace模型识别和裁剪ID参考图像中的面部。image:提供的参考图像用于插入特定ID。method:选择ID插入方法,如"fidelity"(优先保真度)、"style"(保留生成风格)和"neutral"(平衡两者)。weight:控制ID插入强度,范围为0到5。start_at和end_at:控制在去噪步骤的哪个阶段开始和停止应用PuLID ID插入。attn_mask:此选项用于提供灰度掩码图像,以控制ID自定义的应用位置,但并不是必需输入,而是可选输入。Advanced Node:提供了高级节点,可以通过调整fidelity滑块和projection选项进行更精细的生成调优。比如,ortho_v2和fidelity:8等价于标准节点的fidelity方法,而projection ortho和fidelity:16等价于style方法。

Others are asking
视频文案提取,用什么插件
以下是一些可用于提取视频文案的工具和方法: 1. 批量提取文案工具:可以帮助人类提取视频文案。 2. 微信截图工具:能够提取文字。 3. 小程序:可用于提取视频文案和转换文字为语音。 4. 简映等工具:能轻松提取视频文案。 5. 飞书多维表格和 Chrome 插件:通过自动筛选高赞视频、提取文案及进行风格分析,实现一键批量提取、分析和改写抖音视频文案。
2025-03-23
AI辅助写作有什么插件好用
以下是一些好用的 AI 辅助写作插件: 邮件写作: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台,适用于多种语言,网站:https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,适用于改善写作风格和简洁性,网站:http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,特别适合专业写作者,网站:https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,适合需要快速创作和灵感的用户,网站:https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-03-21
本地编程辅助大模型,推荐用哪些插件和基座模型
以下是为您推荐的一些用于本地编程辅助的插件和基座模型: 1. 插件: OpenRouter:新发布的 BYOK 功能,可集成 xAI、OpenAI、Mistral 等数十个平台的 Key,能同时使用其他平台和 OpenRouter 的免费额度。目前支持白“赚”的平台包括 AI Studio、Cohere、DeepSeek、Mistral、SambaNova、Together、xAI 等。 simpleoneapi:若对国产大模型支持有需求,熟悉代码的可通过本地或 Docker 启动。 2. 基座模型: 推理模型:o1、gemini2.0flashthinking 代码模型:claude3.5sonet(性能强)、gpt4omini(价格友好) 多模态模型:gemini2.0flash 常规模型:DeepSeek V3 开源中文大语言模型: FengshenbangLM:基于 LLaMa 的 130 亿参数的大规模预训练模型,具备多种能力,如翻译、编程、文本分类等。地址: BiLLa:推理能力增强的中英双语 LLaMA 模型,提升了中文理解能力。地址: Moss:支持中英双语和多种插件的开源对话语言模型。地址: 此外,对于 SDXL 的本地部署,大模型分为 base+refiner 和配套的 VAE 模型两部分。base 是基础模型用于文生图操作,refiner 用于细化生成的模型以获得更丰富的细节,VAE 用于调节图片效果和色彩。要在 webUI 中使用,需将 webUI 版本升级到 1.5 以上,并将模型放入对应文件夹。
2025-03-20
怎么搭建扣子智能体提取抖音文案并进行改写用到哪些插件,并给我配置参数与步骤图
以下是搭建扣子智能体提取抖音文案并进行改写所需的插件、配置参数及步骤: 1. 插件搭建: 点击个人空间,选择插件,点击创建插件。 插件名称:使用中文,根据需求起名。 插件描述:说明插件的用途和使用方法。 插件工具创建方式:选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具,填写工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以“/”开始,若使用 path 方式传参,用“{}”包裹变量)、请求方法等,结束后点击保存并继续。 2. 配置输入参数: 点击新增参数,填写所有需要使用的参数,保存并继续。 3. 配置输出参数: 如果一切填写正确,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 填入汉字“张”,点击自动解析。 解析成功后显示解析成功,可看到输出参数已填好,然后点击保存并继续。 4. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,安仔使用 Coze 免费创建 24 小时英语陪练的步骤包括: 1. 打开扣子首页,点击左上角创建 AI Bot 按钮。 2. 在弹窗输入 Bot 相关信息。 3. 设计人设与回复逻辑,根据功能需求设计提示词。 4. 调整模型设置,如改为 20 轮对话记录。 5. 选择使用插件,如英文名言警句、Simple OCR 等。 6. 设置开场白和预置问题。 7. 设置语音,选择亲切的英语音色。
2025-03-18
我需要自己搭一个ai自动剪辑视频的插件
以下是搭建 AI 自动剪辑视频插件的详细步骤: 一、开通服务 1. 先获取搭建完成后需要用到的各种模型的 key。 首先注册火山引擎:https://volcengine.com/L/4lZ8oszvY20/ ,邀请码:KL9ZC1IF 。这个项目会使用到不少 Token,刚好火山现在还有赠送 Token 的活动,若未注册,使用此邀请码和链接注册可获得 375 万的 Token。 开通各项服务和拿到各个服务的 Key: 获取 LLM_ENDPOINT_ID、VLM_ENDPOINT_ID、CGT_ENDPOINT_ID、ARK_API_KEY 。注册后点击:控制台,进入火山方舟控制台(https://console.volcengine.com/ark/region:ark+cnbeijing/model?vendor=Bytedance&view=LIST_VIEW)。创建一个接入点,点击在线推理创建推理接入点。命名并选择 Doubaopro32k 模型。重复此步骤创建 Doubaovisionpro32k、Doubao视频生成模型这两个推理点。创建完成后,复制推理点的 ID 并对应填入相应位置。然后继续点击“API key 管理”创建一个并复制下来,这就是 ARK_API_KEY 。 获取 TOS_BUCKET 。 二、服务部署 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole 。 2. 根据以下配置购买即可。 3. 购买并付款完成后,回到服务器“控制台”。 4. 点击服务器卡片的空白处,去添加防火墙。按照如下方式添加:8887、8080 端口,点击确定即可。 5. 点击右上角的“登录”按钮,扫码验证后,看到一个命令行窗口。下边出现代码,复制的时候,注意复制全。代码已分好步骤,每次只需要复制粘贴一行,然后点击一次回车。回车后,只有最左边显示中括号对话前缀时,不要操作。若 ctrl+v 粘贴不进去,试试 shift+ctrl+v 粘贴。 6. 在命令行中,一条一条输入: echo\"8887\">/www/server/panel/data/port.pl sudo kill9$ sudo/etc/init.d/bt default 7. 保存并打开你的外网面板地址,输入账号和密码。 8. 选择已有账号登录,然后会有一个账号绑定页,这个是宝塔的账号,如有就直接登录,没有就去注册一个。注意,注册完成之后,要返回原页面登录!不要停留在宝塔的注册功能页。 9. 直接关掉推荐,来到文件。点击根目录,打开 home 文件。 10. 点击:文件目录上方的“终端”,出现下方窗口。 11. 粘贴输入:git clone https://github.com/volcengine/aiapplab.git 。 12. 然后关闭终端窗口,刷新一下会看到有一个 aiapplab 文件夹,打开文件夹找到 demohouse/chat2cartoon 文件夹,看到有一个“.env”。 13. 然后把提前准备的那些 key 和 token,对应的粘贴进去。 14. 粘贴完成之后,继续进入 backend 文件夹,然后打开“终端”输入以下命令: python3 m venv.venv source.venv/bin/activate pip install poetry==1.6.1 poetry install poetry run python index.py 15. 依次完成后,会如下图所示,看到下图到后端就启动成功了,把这个页面保持如下,不要关掉页面。保持这个终端是打开的。 16. 重新复制打开一个新的浏览器标签页面。返回上级文件夹,进入/home/aiapplab/demohouse/chat2cartoon/frontend/src/routes 。
2025-03-17
写一个可以对接金蝶云之家OA的插件,可以识别上传的发票与之前发票是否有重复提交的情况?
目前没有关于如何编写对接金蝶云之家 OA 并实现识别上传发票是否重复提交的具体内容。但一般来说,要实现这样的插件,您可能需要以下步骤: 1. 了解金蝶云之家 OA 的接口和数据格式规范,以便能够与之进行有效的交互。 2. 建立发票数据的存储和管理机制,用于保存已上传的发票信息。 3. 设计发票识别的算法和逻辑,能够提取发票的关键特征,如发票号码、日期、金额等。 4. 对比新上传发票的特征与已存储发票的特征,判断是否存在重复。 这是一个较为复杂的开发任务,可能需要涉及到软件开发、数据库管理、算法设计等多方面的知识和技术。
2025-03-13
ComfyUI的文档在哪里
以下是一些可以获取 ComfyUI 相关文档和学习资料的途径: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。您可以在找到相关信息。 2. 优设网:提供了一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了 ComfyUI 的特点、安装方法以及如何使用 ComfyUI 生成图像等内容。教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解 ComfyUI 的用户。可以在找到相关教程。 4. Bilibili:提供了一系列的 ComfyUI 视频教程,涵盖了从新手入门到精通的各个阶段。可以在找到视频教程。 此外,还有以下相关资料: 1. 关于 ComfyUI 节点的详细文档,由卡卡布使用 AI 分析整理,包括了 200+官方节点和 1000+第三方节点的详细信息,涵盖每个节点的功能、选项作用及代码实现,便于用户搜索和了解 ComfyUI 节点。 2. 在使用 ComfyUIAdvancedLivePortrait 这个节点时,可能会遇到少了 landmark_model.pth 这个文件的错误,在网盘里可以找到完整的。相关资料链接: 百度网盘:通过网盘分享的文件:图片换背景 链接:https://pan.baidu.com/s/1jN_0R791QmjxbIEgzRyv9w?pwd=cycy 提取码:cycy 说明文档:https://xiaobot.net/post/4ad59e7546e443cba0d270eab7e0da98 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/a4b94677ce99 工作流:https://www.liblib.art/modelinfo/cc6d850d24f6462084c0bc1eb5374e3c?from=personal_page 视频:https://www.bilibili.com/video/BV1FzsbeTEQV/?vd_source=ecb7194379e23ea8b1cb52e3bd5d97ef workflow:https://www.shakker.ai/modelinfo/cc6d850d24f6462084c0bc1eb5374e3c?from=personal_page video:https://youtu.be/W0x3VjwWnAQ 请注意,内容由 AI 大模型生成,请仔细甄别。由于 AI 技术更新迭代,请以文档更新为准。
2025-03-22
comfyUI能干什么?不能干什么?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 应用场景包括: 1. 作为一个强大的可视化后端工具,可以实现 SD 之外的功能,如调用 api 及本文所讲的内容等。 2. 可根据定制需求开发节点或模块。 3. 用于抠图素材的制作,如绿幕素材的抠图,还可以自动生成定制需求的抠图素材。 官方链接:https://github.com/comfyanonymous/ComfyUI
2025-03-21
comfyUI能干什么?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点和功能: 简介:可以将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,能导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 学习使用的原因: 更接近 SD 的底层工作原理。 实现自动化工作流,消灭重复性工作。 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 api 等。 可根据定制需求开发节点或模块。 例如有人因工作室需要抠图素材,传统途径存在问题,而基于 ComfyUI 可以快速自动生成定制需求的抠图素材。 此外,8 月 13 日的 ComfyUI 共学中,包含了对其功能及相关课程内容的介绍,还有关于建筑设计师兼职做 ComfyUI 生态建设、相关模型与工作流的应用案例、内容分享的调整与筹备安排等方面的讨论。
2025-03-21
什么是comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作。 扩散过程(Diffusion Process):噪声的生成和逐步还原,通常通过调度器控制,可通过“采样器”节点选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像,生成图像时扩散模型会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。 基础教程: 应用场景和不可替代性:SD WebUI 的 UI 有很多输入框和按钮,ComfyUI 的 UI 界面复杂,有很多方块和连线。从学习成本看,ComfyUI 较高,但连线可理解为搭建自动化工作流,从左到右依次运行。从功能角度看,两者提供的功能相同,只是 ComfyUI 是连线方式。这种方式的好处是可以根据需求搭建适合自己的工作流,无需依赖开发者,也可根据需求开发并改造某个节点。选择 ComfyUI 最核心的原因在于它的自由和拓展,能保持灵活适应 AI 发展。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
2025-03-21
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-03-21
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
midjourney图怎么 放大
在 Midjourney 中,放大图像的方法如下: 放大(Upscale)将图像尺寸加倍: 精细放大(Subtle):放大图像同时尽量保持原样。 创意放大(Creative):在放大的同时会调整或改变图像中的某些细节。 操作时,您可以点击相应的按钮进行放大。例如,在生成的图像中,点击上面的 U 1 4 即可放大一张图。 另外,使用当前默认模型版本的中途图像的默认尺寸为 1024 x 1024 像素。您可以使用 upscale 工具将文件大小增加到 2048 x 2048 或 4096 x 4096 像素。在网络浏览器中打开 Midjourney 图像,或从 Midjourney.com 下载它们以获得最大文件大小。 需要注意的是,如果没看到放大相关的按钮,可能有以下原因: 1. 该图像已经在 Discord 中生成最满意的一张,不可再放大。 2. 在 More options 文字里没打上相应的对勾。
2025-03-21
图片放大
图像放大主要通过以下几种方式实现: 1. 图像高清修复流程: 输入原始图像:添加Load Image节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复:使用Iceclear/StableSR等模型进行修复并2倍放大,搭配Stable SR Upscaler模型和合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)等。 图像高清放大:对第一次放大修复后的图像进行二次修复,使用realisticVision底膜,搭配tile ControlNet提升画面细节感,选择合适的高清放大模型。 2. 利用插件和脚本: Tiled Diffusion中的MultiDiffusion方案适合图像的重绘、风格迁移和放大等功能,其中的滑块可调节分块大小、重叠像素和同时处理的分块数量。 Tiled VAE可降低VAE编解码大图所需的显存字节,分块大小可根据电脑情况调节。 3. 辅助工具: 本地工具:https://www.upscayl.org/download SD放大:扩散模型可增加更多细节 开源工作流: 相关网站: stability.ai的https://clipdrop.co/tools 画质增强magnific遥遥领先:https://magnific.ai/ Krea https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯ARChttps://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/
2025-03-08
comfyui tile放大
以下是关于 ComfyUI tile 放大的相关内容: 文生图工作流搭建:先左键点住 CLIP 黄点向外拖,再拖出两个 CLIP 编码器,从条件处拉出采样器,连接正负提示词和模型,还需 VE 解码器和 VE 模型,若模型无 VAE 则需加载器。 浅空间图像放大:从第一个采样器向右拉,点击按系数缩放将 later 调成 2 倍,复制采样器、VE 解码器并连接处理过的 later。 Confii 图像放大操作:从第一个采样器开始,通过一系列操作如添加 Latin 节点、连接提示词和模型、连接 VE 解码器等,并设置重绘幅度、缩放系数等参数来实现图像放大。参数设置方面,重绘幅度(降噪)决定图像改变程度,数值越高与原始图像差别越大;缩放系数默认 1.5,可调整为 2。 在 SD 中,可使用 Ultimate SD upscale 插件放大,也可在图生图中进行放大,重绘幅度设置为 0.6。放大时打开 Tiled Diffusion,方案选择 MultiDiffusion,放大算法选择 RESRGAN 4x+Anime6B,放大 2 倍。同时启用 Tiled VAE 和 controlnet 插件的 tile 模型,给图片添加细节。
2025-03-03
帮我找一些可以无损放大图片的ai 产品
以下是一些可以无损放大图片的 AI 产品: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN 在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ 此外,以下是图片增强方面的 AI 产品排名数据: 4 月访问量(万 Visit): 1. Cutout pro 图片增强 1608 相对 3 月变化 0.023 2. Upscale media 图片增强 432 相对 3 月变化 0.073 3. ZMO AI 图片增强 338 相对 3 月变化 0.161 4. Neural.love Art 图片增强 283 相对 3 月变化 0.072 5. Topaz Photo AI 图片增强 247 相对 3 月变化 0.047 6. VanceAI 图片增强 247 相对 3 月变化 0.078 7. bigjpgAI 图片无损放大 图片增强 203 相对 3 月变化 0.06 8. Img Upscaler 图片增强 203 相对 3 月变化 0.042 9. Let's Enhance 图片增强 167 相对 3 月变化 0.046 10. Akool 图片增强 122 相对 3 月变化 0.173 6 月访问量(万 Visit): 1. Cutout pro 图片增强 1408 相对 5 月变化 0.082 2. Upscale media 图片增强 433 相对 5 月变化 0.029 3. Neural.love Art 图片增强 253 相对 5 月变化 0.137 4. Img Upscaler 图片增强 244 相对 5 月变化 0.032 5. VanceAI 图片增强 239 相对 5 月变化 0.077 6. ZMO AI 图片增强 221 相对 5 月变化 0.153 7. bigjpgAI 图片无损放大 图片增强 180 相对 5 月变化 0.109 8. Topaz Photo AI/Topaz Video AI 图片增强 170 相对 5 月变化 0.224 9. Let's Enhance 图片增强 150 相对 5 月变化 0.102 10. Akool 图片增强 142 相对 5 月变化 0.193
2025-02-24
放大图片
在 AI 绘画领域,放大图片有以下相关知识: Midjourney 中放大图片的方法: 使用 /imagine 命令生成低分辨率图像选项网格,每个图像网格下方的按钮可用于创建图像的变体、升级图像或重新运行最后一个 Midjourney Bot 操作。 U1U2U3U4 按钮将图像与图像网格分开,使用旧版 Midjourney 模型版本时,U 按钮会放大图像,生成所选图像的更大版本并添加更多细节。 重做(重新滚动)按钮重新运行作业。 V1V2V3V4V 按钮创建所选网格图像的增量变化。 制作变体:创建放大图像的变体并生成包含四个选项的新网格。网页:在上打开图库中的图像,最喜欢的:标记您最好的图像,以便在 Midjourney 网站上轻松找到它们。 直接消息:如果general 或newbie 频道进展太快,Midjourney 订阅者可以在其 Discord 直接消息中与 Midjourney 机器人进行一对一的合作。 使用 Midjourney Vary Region 编辑器选择并重新生成放大图像的特定部分。Vary按钮会在中途图像放大后出现,区域差异由原始图像中的内容和您选择的区域决定,与 Midjourney 模型版本 V5.0、V5.1、V5.2、niji 5 兼容。具体操作步骤如下: 1. 生成图像:使用命令创建图像/imagine。 2. 升级图像:使用 U 按钮放大所选图像。 3. 选择不同区域:点击🖌️Vary按钮,打开编辑界面。 4. 选择要再生的区域:选择编辑器左下角的手绘或矩形选择工具,选择要重新生成的图像区域。注意选择的大小会影响结果,更大的选择为 Midjourney 机器人提供更多空间来生成新的创意细节,较小的选择将导致更小、更微妙的变化。无法编辑现有选择,但可以使用右上角的撤消按钮撤消多个步骤。 5. 提交您的工作:单击 Submit→按钮将您的请求发送到 Midjourney Bot。 6. 查看结果:中途机器人将处理您的作业并在您选择的区域内生成一个新的变化图像网格。 Stable Diffusion 中放大图片的相关设置: 文生图是仅通过正反向词汇描述来发送指令。在进行文本描述时,分为内容型提示词和标准化提示词,内容型提示词主要用于描述想要的画面。 采样迭代步数通常数值控制在 20 40 之间,步数越高绘画越清晰,但绘画速度也会越慢。 采样方法一般常用的为:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM。有的模型会有指定的算法,搭配起来更好用。 将比例设置为 800:400,注意尺寸并非越大越好,模型的练图基本上都是按照 512x512 的框架去画,高宽比尽量在这个数值附近。太大的数值比如 1920x1080,会使 AI 做出很奇怪的构图。若想要高清的图,可以同时点选高清修复来放大图像倍率,高宽比主要是控制一个画面比例。
2025-01-15
图片放大
以下是关于图片放大的相关信息: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: stability.ai 的:https://clipdrop.co/tools 画质增强: https://magnific.ai/ https://www.krea.ai/apps/image/enhancer https://imageupscaler.com/ https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 https://imglarger.com/ https://letsenhance.io/ http://waifu2x.udp.jp/ 在 SD 中进行图片放大: 使用过插件、脚本和后期处理,原理相同,好坏需尝试,因为 AI 生图有随机性。 在 Tiled Diffusion 中,MultiDiffusion 方案适合图像重绘、风格迁移和放大等功能。 四个滑块代表分块大小、分块之间的重叠像素和同时处理的分块数量,数值越大效果越好、速度越快,数值越小占用显存越小,一般保持默认,重叠像素大小建议使用 MultiDiffusion 时选择 32 或 48,使用 Mixture of Diffusers 选择 16 或 32。 Tiled VAE 可极大程度降低 VAE 编解码大图所需的显存字节,分块大小根据电脑情况调节,数值越小占用显存越低。 生成 512x512 的图片,发送到图生图进行重绘,选择熟悉的放大算法和所需的放大倍数,重绘幅度设置为 0.35,放大算法下面的噪声反转可在重绘前对原图像进行噪声图反推,让放大的图片更接近原图。 在 SD 中文生图的相关提示词: Stable Diffusion 的生成方式主要分为文生图和图生图两种,文生图仅通过正反向词汇描述发送指令,图生图除文字外还可给 AI 参考图进行模仿(垫图)。 文本描述分为内容型提示词和标准化提示词,内容型提示词用于描述想要的画面,例如:1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面(使用翻译软件翻译成英文)。 采样迭代步数通常控制在 20 40 之间,采样方法常用的有:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM。 比例设置为 800:400,高宽比尽量在 512x512 数值附近,太大的数值会使 AI 构图奇怪,可同时点选高清修复来放大图像倍率。
2024-12-20