Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在 COMFY UI 中,关于 Tile 平铺预处理器怎么工作流中怎么使用

Answer

在 ComfyUI 中,关于 Tile 平铺预处理器的使用方法如下:

  1. 平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的 GPU 内存下处理高分辨率视频。
    • tile_sample_min_height:96,最小平铺高度。
    • tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。
    • tile_overlap_factor_height:0.083,高度方向的重叠因子。
    • tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。
    • enable_vae_tiling:设置为 false,表示不启用 VAE(变分自编码器)的图像平铺。
    • enable_vae_slicing:设置为 false,表示不启用 VAE 切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE 切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。
  2. 将您的 ComfyUI 更新到最新。
  3. 将 clip_l 和 t5xxl_fp16 模型下载到 models/clip 文件夹。确保您的 ComfyUI/models/clip/目录中,有 t5xxl_fp16.safetensors 和 clip_l.safetensors,您可以改用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用量,但如果您的 RAM 超过 32GB,建议使用 fp16。跑过 flux 就有这些模型,没有的话翻之前文章有下载工具教程:Flux
  4. 在您的 ComfyUI/models/vae/文件夹中,有 ae.safetensors。
  5. 将最开始下载的 flux1-fill-dev.safetensors 放于 ComfyUI/models/unet/文件夹中。
  6. 使用 flux_inpainting_example 或者 flux_outpainting_example 工作流。
Content generated by AI large model, please carefully verify (powered by aily)

References

FLUX这下真无敌了!多种官方FLUX工具开源

1.将你的ComfyUI更新到最新。2.将clip_l和t5xxl_fp16模型下载到models/clip文件夹。确保你的ComfyUI/models/clip/目录中,有t5xxl_fp16.safetensors和clip_l.safetensors,你可以改用t5xxl_fp8_e4m3fn.safetensors来降低内存使用量,但如果您的RAM超过32GB,建议使用fp16。跑过flux就有这些模型,没有的话翻之前文章有下载[工具教程:Flux](https://waytoagi.feishu.cn/wiki/IqeZwDOqviJlclkorqIcM5Sdnle?from=from_copylink)1.在你的ComfyUI/models/vae/文件夹中,有下面这个vae模型:ae.safetensors夸克网盘:https://pan.quark.cn/s/57e7366b23081.将最开始下载的flux1-fill-dev.safetensors放于ComfyUI/models/unet/文件夹中夸克网盘:https://pan.quark.cn/s/ce898c9c8313百度网盘:链接:https://pan.baidu.com/s/1u_PrqTBw1mLNumeimSTzyg?pwd=99dz提取码:99dz1.使用flux_inpainting_example或者flux_outpainting_example工作流。夸克网盘:链接:https://pan.quark.cn/s/4ec9d4cfce89百度网盘:链接:https://pan.baidu.com/s/1qK_2kUojF6nsha9cD2Eg2Q?pwd=ris5提取码:ris5

ComfyUI CogVideoX-5b开源文生视频

平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的GPU内存下处理高分辨率视频。tile_sample_min_height:96,最小平铺高度。tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。tile_overlap_factor_height:0.083,高度方向的重叠因子。tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。enable_vae_tiling:设置为false,表示不启用VAE(变分自编码器)的图像平铺。enable_vae_slicing:设置为false,表示不启用VAE切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。[heading3]CogVideo图像编码[content]用于视频生视频,目前有点相当于重绘。chunk_size:16这个参数定义了在时间维度上每次处理的帧数。设置为16意味着模型每次会处理16帧的图像块。这有助于在处理长视频序列时管理内存使用。enable_vae_slicing:这个选项控制是否启用VAE(变分自编码器)切片。当设置为false时,不使用VAE切片技术。VAE切片可以通过分割输入张量来分步计算编码,有助于节省内存。

【ComfyUI】使用ComfyUI玩SDXL的正确打开方式

但是,现在问题来了。如果我将refiner的模型连上提示词的话,第一个base模型的链接就会断开,怎么样才能让两个模型同时起作用呢?我们来加入一个新节点,右键点击-【新建节点】-【实用工具】-【Primitive元节点】。这个节点很有意思,它连接谁,就会变成谁的属性。在文本节点上单击右键,选择【转换文本为输入】。此时,文本节点上就多了一个文本的连接点。将元节点与文本节点相连接,这时元节点就变成了正向提示词的输入框。同理,可以将负向提示词框也用元节点代替。再复制出一套正负提示词节点,一套给base模型,一套给refiner模型。然后,base模型的那一套输出给第一个采样器节点,refiner模型的那一套输出给第二个采样器节点。最后,我们能可以输出两个图像节点,第一个链接base模型的vae,可以设置为预览图像;第二个链接一个VAE加载器的节点,加载sdxl自带的vae,设置为保存图像,也就是我们最终输出的图像。使用这个工作流我们来跑一张sdxl模型的图片,设置好两个模型和提示词,点击生成。

Others are asking
comfyui 官网
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。 关于 ComfyUI 的学习资料,有以下几个网站提供相关教程: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。 2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境:依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
如何学习comfyui
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有 ComfyUI 共学快闪的飞书学习群,其中包含了众多如 Stuart 风格迁移、红泥小火炉基础课程等各类课程和讲解,如郑个小目标针对于某个插件的深入讲解、波风若川报错解决等。 另外,有人因为以下原因学习使用 ComfyUI:更接近 SD 的底层工作原理;自动化工作流,消灭重复性工作;作为强大的可视化后端工具,可实现 SD 之外的功能,还能根据定制需求开发节点或模块。例如,有人为了工作室获取抠图素材的需求,基于创建了工作流,不仅能用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程仅需几秒。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
我想学习关于 comfy ui的内容
以下是一些关于 ComfyUI 的学习资源和相关信息: 1. 学习资料: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的 ComfyUI 入门教程,适合初学者。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享 ComfyUI 的部署教程和使用说明,适合有一定基础的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:提供一系列从新手入门到精通的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 2. 8 月 13 日 ComfyUI 共学内容: 包括学习交流与活动安排,讨论了学习需求、教程分享、部署问题、应用场景及活动规划。 工作流的分享与探讨,涉及不同场景应用、优势、弊端及学习方法,还有分享会和开源社区情况。 学习交流与报错问题解决,包括使用、工作流分享、报错问题及解决方案,以及课程设计安排。 讨论了 AI 绘图技术在工作中的应用与分享,包括项目实践、技术调研、培训及未来教学计划等。 介绍了课程规划,包括从零基础开始,逐步深入到环境部署、底层技术概念、提示词等内容,还介绍了 config 牛角尖大王系列。 提到具备搭建复杂工作流能力,会拆解分析网上热门工作流,报错问题可分为网络、模型、工作流搭建、环境等方面,安装新插件时可参考项目地址的 requirement 文档,规划了实战案例思路。 3. ComfyUI 自动生成抠图素材: 学习使用 ComfyUI 的原因:更接近 SD 的底层工作原理,自动化工作流,作为强大的可视化后端工具可实现 SD 之外的功能,可根据定制需求开发节点或模块。 作者制作工作流的动机是工作室经常需要抠图素材,传统途径要么花钱要么花时间且不能定制,近期在 github 上看到相关项目,基于此创建了工作流,可自动生成定制需求的抠图素材,几秒即可完成。随后将分享创建工作流的思路及详细步骤讲解。
2025-01-22
ComfyUI_LayerStyle
ComfyUI_LayerStyle 相关内容如下: 加载模型部分: 下好工作流中的所需三张图片“SeasonYou_Reference、BG、MASK”以及上传自己所需的照片到 Input 部分。右上角放自己的人像图片(非人像会报错提示“no face detected”)。 对于 vae 加载器部分,选择 xl 版本(因为大模型用的 xl)的 vae 即可。 对于 ipadater 部分,倘若加载器部分报错说 model 不存在,将文中画圈部分修改调整到不报错。 Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”及对应的云盘链接:PulID 全套模型 链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb 提取码:y6hb ,否则将会报错。 爆肝博主 ZHO 的更新记录: 3 月 7 日:ComfyUI 支持 Stable Cascade 的 Inpainting ControlNet,ComfyUI 作者在示例页面给出了说明和工作流:https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/ ,博主自己也整理了一版,分享在:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO ,说明第二个 inpainting+composite 是将原图帖回到重绘之后的效果,是非必要项,按需使用。 3 月 6 日:国内作者把 ps 很多功能都迁移到了 ComfyUI 里,项目是:https://github.com/chflame163/ComfyUI_LayerStyle 。最新版 ComfyUI 支持了一系列图像形态学处理,包括 erode 腐蚀(去除小噪点/分离相邻对象)、dilate 膨胀(填补小洞/连接临近对象)、open 开(先腐蚀后膨胀)、close 闭(先膨胀后腐蚀)、gradient 梯度(膨胀与腐蚀之差)、top_hat 顶帽(原图与开之差)、bottom_hat 底帽(原图与闭之差)。使用方法为:1)更新 ComfyUI;2)右键 image/postprocessing/ImageMorphology;3)接上图像输入和输出即可。
2025-01-15
COMFY UI中的Tile平铺预处理器
在 COMFY UI 中,关于 Tile 平铺预处理器: CogVideoX5b 开源文生视频: 分块长度(t_tile_length):时间维度上的分块大小,用于处理长视频,值为 16。如果和帧数一致,画面会比较稳定,但变化会少很多。 分块重叠(t_tile_overlap):时间维度上相邻分块的重叠帧数,值为 8。 解码: tile_sample_min_height:最小平铺高度,值为 96。 tile_sample_min_width:最小平铺宽度,值为 96。 tile_overlap_factor_height:高度方向的重叠因子。 tile_overlap_factor_width:宽度方向的重叠因子。 enable_vae_tiling:设置为 false,表示不启用 VAE 的图像平铺。 enable_vae_slicing:设置为 false,表示不启用 VAE 切片。启用平铺会将大图像分割成小块处理再组合,有助于处理大分辨率视频。VAE 切片可通过分割输入张量分步计算解码以节省内存。 图像编码: chunk_size:在时间维度上每次处理的帧数,值为 16,有助于处理长视频序列时管理内存使用。 enable_vae_slicing:控制是否启用 VAE 切片,设置为 false 时不使用。 此外,ComfyUI 中的 SD3 预训练文本编码器使用了三个固定的预训练文本编码器(CLIPViT/G、CLIPViT/L 和 T5xxl)。CLIPViT/G 优化了图像和文本之间的关系理解,CLIPViT/L 专注于从图像和文本对中提取特征,T5xxl 是一个强大的文本生成模型,增强了文本提示的理解和生成能力。
2024-12-26
COMFY UI中的Repeat或Tile功能
ComfyUI 中的 Repeat 或 Tile 功能: 分块长度(t_tile_length):时间维度上每次处理的帧数,用于处理长视频,如设置为 16。当分块长度与帧数一致时,画面较稳定但变化少。例如,帧数 32 时分块长度可为 24 或 32。 分块重叠(t_tile_overlap):相邻时间块之间重叠的帧数,如设置为 8。 其工作原理为: 1. 将长视频分割成多个重叠的短片段(tiles)。 2. 对每个片段单独进行处理。 3. 在重叠区域使用混合或平滑技术,确保片段之间的过渡自然。 ComfyUI 相关动态: 发布了相对大的版本更新 0.10,支持在 ComfyUI 中使用循环和条件语句,前端代码迁移到 TypeScript,新的搜索和设置 UI,实验性 FP8 算法支持以及 GGUF 量化支持。 ComfyUI 视频背景替换工作流: 用了一个 tile 来固定画面,让采样生成后的视频与原来一致。 资料链接: https://pan.baidu.com/s/1NomdtOR6TbaurTuzGwoMUw?pwd=cycy https://xiaobot.net/post/0e6aa76398a24cc5867c44aca7e887ea 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/4e5232c92746 工作流:https://www.liblib.art/modelinfo/23c073ff88194c32be15fe56977223ef?from=personal_page 视频:https://www.bilibili.com/video/BV1NZHfeREAp/?vd_source=ecb7194379e23ea8b1cb52e3bd5d97ef workflow:https://openart.ai/workflows/e3H4DwH55TlMBlT7MI4A https://www.shakker.ai/modelinfo/9f06f370c1614be89180c1c9fb9864eb?from=personal_page video:https://youtu.be/nf753qp1pLg
2024-12-26
工作流中如何调用插件
在工作流中调用插件的方式如下: 1. 触发器触发: 为 Bot 设置触发器,可选择定时触发或事件触发。 触发时执行任务的方式包括 Bot 提示词、调用插件、调用工作流。 调用插件时,需为触发器添加一个插件,触发后 Bot 会调用该插件获取返回结果并发送给用户。 一个 Bot 内的触发器最多可添加 10 个,且仅当 Bot 发布飞书时生效。 2. 在 Bot 内使用插件: 在 Bots 页面,选择指定 Bot 并进入 Bot 编排页面。 在 Bot 编排页面的插件区域,单击加号图标添加插件,或者单击自动添加图标,让大语言模型自动添加适用的插件。使用大语言模型自动添加插件后,需检查被添加的插件是否可以正常使用。 在添加插件页面,展开目标插件查看工具,然后单击添加。单击我的工具,可查看当前团队下可用的插件。 在 Bot 的人设与回复逻辑区域,定义何时使用插件,然后在预览与调试区域测试插件功能是否符合预期。 3. 在工作流中使用插件节点: 在页面顶部进入工作流页面,然后创建工作流或选择一个已创建的工作流。 在页面左侧,单击插件页签。 搜索并选择插件,然后单击加号图标。 在工作流的画布内,连接插件节点,并配置插件的输入和输出。 需要注意的是,即使是官方插件也可能存在不稳定的情况,需要自己去尝试,找到适合当前场景的插件。
2025-01-14
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
coze工作流中数据库如何应用?主要是返回数据
在 Coze 工作流中,数据库的应用如下: 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。 数据库节点的输入:用户可以定义多个输入参数。 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
2025-01-08
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
coze工作流中的编辑代码如何使用
在 Coze 工作流中,代码的使用方法如下: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求自定义工作流信息,点击确认后完成工作流的新建。 在编辑视图中,左侧「选择节点」模块中,代码节点支持编写简单的 Python、JS 脚本,对数据进行处理。 按照流程图,在编辑面板中拖入对应的代码节点。 例如在艾木的介绍中,利用“Code”组块插入一段 Python 代码,将 Google 搜索返回结果格式化成两个字符串,一个是由搜索结果相关信息拼接而成,另一个是由搜索出来的网页链接拼接而成。这段代码起到了粘合剂的作用,逻辑不复杂,理论上也可以让 AI 帮助生成。
2024-09-30
comfui 出现SUPIR_Upscale怎么办
当 ComfyUi 出现 SUPIR_Upscale 时,以下是相关信息: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码。此方法比传统的 VAE 解码和编码快很多,并且质量损失很小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。 具体流程包括:生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理从而修复成高分辨率图像)。此节点用于一种工作流程,初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散 unet 中进行低噪声扩散处理(高分辨率修复)。 UNet 是一种特别的神经网络结构,常用于图像处理,尤其是图像分割。其工作方式包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像把提取的特征重新组合成高分辨率的图像)、跳跃连接(在缩小和放大过程中保留细节信息使最终生成的图像更清晰),这种结构能在放大图像时保持细节和准确性。 ComfyUI 老照片修复 Flux Controlnet Upscale 中,关于 flux unet 的 weight_dtype: Flux 模型主要用于图像处理,特别是上采样。这类任务通常需要较高精度来保留图像细节。 fp8 格式包括 fp8_e4m3fn(4 位指数,3 位尾数,通常提供更好的精度)和 fp8_e5m2(5 位指数,2 位尾数,提供更大的数值范围但精度较低)。 图像处理通常更依赖于精确的小数值表示,现代 GPU 通常对 fp8_e4m3fn 格式有更好的优化支持。在没有特殊需求的情况下,图像处理模型通常倾向于选择提供更高精度的格式,对于 Flux 模型,特别是在进行图像上采样任务时,fp8_e4m3fn 可能是更好的选择,因为更高的精度有利于保留图像细节和纹理,图像处理通常不需要特别大的数值范围,fp8_e4m3fn 的精度优势更为重要,这种格式在现代 GPU 上可能有更好的性能表现。
2025-01-21