Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在 COMFY UI 中,关于 Tile 平铺预处理器怎么工作流中怎么使用

Answer

在 ComfyUI 中,关于 Tile 平铺预处理器的使用方法如下:

  1. 平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的 GPU 内存下处理高分辨率视频。
    • tile_sample_min_height:96,最小平铺高度。
    • tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。
    • tile_overlap_factor_height:0.083,高度方向的重叠因子。
    • tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。
    • enable_vae_tiling:设置为 false,表示不启用 VAE(变分自编码器)的图像平铺。
    • enable_vae_slicing:设置为 false,表示不启用 VAE 切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE 切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。
  2. 将您的 ComfyUI 更新到最新。
  3. 将 clip_l 和 t5xxl_fp16 模型下载到 models/clip 文件夹。确保您的 ComfyUI/models/clip/目录中,有 t5xxl_fp16.safetensors 和 clip_l.safetensors,您可以改用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用量,但如果您的 RAM 超过 32GB,建议使用 fp16。跑过 flux 就有这些模型,没有的话翻之前文章有下载工具教程:Flux
  4. 在您的 ComfyUI/models/vae/文件夹中,有 ae.safetensors。
  5. 将最开始下载的 flux1-fill-dev.safetensors 放于 ComfyUI/models/unet/文件夹中。
  6. 使用 flux_inpainting_example 或者 flux_outpainting_example 工作流。
Content generated by AI large model, please carefully verify (powered by aily)

References

FLUX这下真无敌了!多种官方FLUX工具开源

1.将你的ComfyUI更新到最新。2.将clip_l和t5xxl_fp16模型下载到models/clip文件夹。确保你的ComfyUI/models/clip/目录中,有t5xxl_fp16.safetensors和clip_l.safetensors,你可以改用t5xxl_fp8_e4m3fn.safetensors来降低内存使用量,但如果您的RAM超过32GB,建议使用fp16。跑过flux就有这些模型,没有的话翻之前文章有下载[工具教程:Flux](https://waytoagi.feishu.cn/wiki/IqeZwDOqviJlclkorqIcM5Sdnle?from=from_copylink)1.在你的ComfyUI/models/vae/文件夹中,有下面这个vae模型:ae.safetensors夸克网盘:https://pan.quark.cn/s/57e7366b23081.将最开始下载的flux1-fill-dev.safetensors放于ComfyUI/models/unet/文件夹中夸克网盘:https://pan.quark.cn/s/ce898c9c8313百度网盘:链接:https://pan.baidu.com/s/1u_PrqTBw1mLNumeimSTzyg?pwd=99dz提取码:99dz1.使用flux_inpainting_example或者flux_outpainting_example工作流。夸克网盘:链接:https://pan.quark.cn/s/4ec9d4cfce89百度网盘:链接:https://pan.baidu.com/s/1qK_2kUojF6nsha9cD2Eg2Q?pwd=ris5提取码:ris5

ComfyUI CogVideoX-5b开源文生视频

平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的GPU内存下处理高分辨率视频。tile_sample_min_height:96,最小平铺高度。tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。tile_overlap_factor_height:0.083,高度方向的重叠因子。tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。enable_vae_tiling:设置为false,表示不启用VAE(变分自编码器)的图像平铺。enable_vae_slicing:设置为false,表示不启用VAE切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。[heading3]CogVideo图像编码[content]用于视频生视频,目前有点相当于重绘。chunk_size:16这个参数定义了在时间维度上每次处理的帧数。设置为16意味着模型每次会处理16帧的图像块。这有助于在处理长视频序列时管理内存使用。enable_vae_slicing:这个选项控制是否启用VAE(变分自编码器)切片。当设置为false时,不使用VAE切片技术。VAE切片可以通过分割输入张量来分步计算编码,有助于节省内存。

【ComfyUI】使用ComfyUI玩SDXL的正确打开方式

但是,现在问题来了。如果我将refiner的模型连上提示词的话,第一个base模型的链接就会断开,怎么样才能让两个模型同时起作用呢?我们来加入一个新节点,右键点击-【新建节点】-【实用工具】-【Primitive元节点】。这个节点很有意思,它连接谁,就会变成谁的属性。在文本节点上单击右键,选择【转换文本为输入】。此时,文本节点上就多了一个文本的连接点。将元节点与文本节点相连接,这时元节点就变成了正向提示词的输入框。同理,可以将负向提示词框也用元节点代替。再复制出一套正负提示词节点,一套给base模型,一套给refiner模型。然后,base模型的那一套输出给第一个采样器节点,refiner模型的那一套输出给第二个采样器节点。最后,我们能可以输出两个图像节点,第一个链接base模型的vae,可以设置为预览图像;第二个链接一个VAE加载器的节点,加载sdxl自带的vae,设置为保存图像,也就是我们最终输出的图像。使用这个工作流我们来跑一张sdxl模型的图片,设置好两个模型和提示词,点击生成。

Others are asking
comfyUI基础教程
以下是 ComfyUI 的基础教程: KSampler(采样器): seed(随机种子):主要用于控制潜空间的初始噪声。若要重复生成相同图片,需使用此随机种子,且种子和 Prompt 都要相同。 control_after_generate(生成后控制):每次生成完图片,seed 数字会变化,此配置项可设置变化规则,包括 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step(采样步数):一般步数越大效果越好,但与使用的模型和采样器有关。 cfg:值一般设置在 6 8 之间较好。 sampler_name(采样器名称):可通过此设置采样器算法。 scheduler(调度器):主要控制每个步骤中去噪的过程,可选择不同调度算法,有的每步减去相同数量噪声,有的每步尽可能多去噪。 denoise:表示要增加的初始噪声量,1 表示全部。一般文生图可默认设为 1。 此外,ComfyUI 共学快闪的学习内容还包括: 王蓉🍀🎈Wang Easy 的基础搭建和转绘。 唯有葵花向日晴的基础教程、工作流开发和实际应用场景。 热辣 Huolarr AI 系统课私聊图生视频。 咖菲猫咪的基础教程、工作流搭建思路、各版本模型使用的优缺点。 傅小瑶 Lucky 的如何制作多人转绘视频。 云尚的工作流节点搭建思路。 FǎFá 的热门节点功能和搭建。 森林小羊的基本报错解决方式及基础工作流逻辑分析。 苏小蕊的基础教程。 Sophy 的基础课程。 蜂老六装一百个最新常用插件后如何快速解决冲突问题。 阿苏的工作流框架设计。 aflyrt 的 comfyui 节点设计与开发。 老宋&SD 深度解释虚拟环境部署和缺失模型的安装。 Liguo 的模型训练。 啊乐福的基础课程。 塵的优秀案例。 风信的基础课程和平面设计应用场景。 北南的基础课程。 视频工作流框架设计。 Damon 的基础课程。 渔舟的基础课程和工作流搭建思路。 乔木船长的工作流。 ☘️的基础教程。 工作流设计和典型案例剖析。 麒白掌的工作流搭建。 OutSider 的风格迁移。 吴鹏的基础和工作流搭建。 拾光的工作流基础搭建从入门到精通。 茶浅浅的视频转绘和节点工作流介绍。 百废待.新(早睡版)的工作流从入门到进阶。 电商应用场景。
2025-02-28
怎么用comfyUI中的视频IC-light
使用 ComfyUI 中的视频 IClight 的步骤如下: 1. 在管理器中的节点管理中搜索 ComfyUIICLight 进行安装,安装后重启 ComfyUI。 2. 模型可以在网盘里下载,然后放入 ComfyUI/models/unet 文件夹。 3. IC Light 用于处理原视频和新背景之间的光影效果。 4. 辅助工具 ICLight 的打光方式有两种: 文本方式:上传 1 张前景图片,自动抠图,填写详细文本提示词,并在几种给定的光源方向选择。 背景+前景方式:上传 1 张背景图+1 张前景图,自动融合,填写简单文本提示词,并在几种给定的光源方向选择。 需要注意的是,IC Light 处理过的图片可能会颜色发黄偏色,不是处理过的就是好的,有时可能会负优化。另外,在进行背景替换时,不同图片合并要考虑光线、色调、边缘细节等问题。
2025-02-26
comfyui算力平台
以下是关于 ComfyUI 算力平台的相关信息: 揽睿: 属性:云平台 邀请链接:https://lanruiai.com/register?invitation_code=0659 备注:WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长 厚德云: 属性:云平台 邀请链接:https://portal.houdeyun.cn/register?from=Waytoagi 备注:厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度飞桨: 属性:云平台 邀请链接:https://aistudio.baidu.com/community/app/106043?source=appCenter 备注:新注册 2 个小时。,明天给大家发放 50 小时的算力 阿里云 PAI Artlab: 属性:云平台 邀请链接:直达地址:https://developer.aliyun.com/topic/paisports 备注:登录后领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw onethingai: 属性:云平台 邀请链接:https://onethingai.com/invitation?code=dyAK4vY5 以云平台揽睿为例,搭建自己第一个 Comfyui 的方法如下: 1. 进入「应用启动器」页面,选择「comfyui 官方启动器」,点击「部署」按钮,点击「立即创建」,会进入「工作空间」页面。 2. 创建完成后稍等片刻,无需其他任何操作,等待「打开应用」按钮可点击后,点击该按钮就可以打开 comfyui 界面使用啦。 3. 启动/出图/训练进度可进入工作空间详情 日志查看。
2025-02-25
comfyui算力
以下是一些关于 ComfyUI 算力的相关信息: 云平台: 揽睿:云平台,邀请链接为 https://lanruiai.com/register?invitation_code=0659 ,WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长。 百度飞桨:云平台,邀请链接为 https://aistudio.baidu.com/community/app/106043?source=appCenter ,新注册 2 个小时。点这里登记一下 https://waytoagi.feishu.cn/share/base/form/shrcnYyxqAWdsFq5qBso8mDsOjg?iframeFrom=docx&ccm_open=iframe ,明天给大家发放 50 小时的算力。 阿里云 PAI Artlab:云平台,直达地址为 https://x.sm.cn/5hd9PfM ,登录后右上角领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw 。 onethingai:邀请链接为 https://onethingai.com/invitation?code=dyAK4vY5 。 以云平台揽睿为例,搭建 ComfyUI 的步骤: 1. 进入「应用启动器」页面,选择「comfyui 官方启动器」,点击「部署」按钮,点击「立即创建」,会进入「工作空间」页面。 2. 创建完成后稍等片刻,无需其他任何操作,等待「打开应用」按钮可点击后,点击该按钮就可以打开 comfyui 界面使用啦。 3. 启动/出图/训练进度可进入工作空间详情 日志查看。
2025-02-25
ComfyUI教程
以下是一些关于 ComfyUI 的教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到。 4. Bilibili:提供了从新手入门到精通各个阶段的视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:一般设置在 6 8 之间较好。 5. sampler_name:可通过此设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2025-02-20
ComfyUI中的放大插件
ComfyUI 中的放大插件相关知识如下: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理)。UNet 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。 Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
2025-02-20
COMFY UI中的Tile平铺预处理器
在 COMFY UI 中,关于 Tile 平铺预处理器: CogVideoX5b 开源文生视频: 分块长度(t_tile_length):时间维度上的分块大小,用于处理长视频,值为 16。如果和帧数一致,画面会比较稳定,但变化会少很多。 分块重叠(t_tile_overlap):时间维度上相邻分块的重叠帧数,值为 8。 解码: tile_sample_min_height:最小平铺高度,值为 96。 tile_sample_min_width:最小平铺宽度,值为 96。 tile_overlap_factor_height:高度方向的重叠因子。 tile_overlap_factor_width:宽度方向的重叠因子。 enable_vae_tiling:设置为 false,表示不启用 VAE 的图像平铺。 enable_vae_slicing:设置为 false,表示不启用 VAE 切片。启用平铺会将大图像分割成小块处理再组合,有助于处理大分辨率视频。VAE 切片可通过分割输入张量分步计算解码以节省内存。 图像编码: chunk_size:在时间维度上每次处理的帧数,值为 16,有助于处理长视频序列时管理内存使用。 enable_vae_slicing:控制是否启用 VAE 切片,设置为 false 时不使用。 此外,ComfyUI 中的 SD3 预训练文本编码器使用了三个固定的预训练文本编码器(CLIPViT/G、CLIPViT/L 和 T5xxl)。CLIPViT/G 优化了图像和文本之间的关系理解,CLIPViT/L 专注于从图像和文本对中提取特征,T5xxl 是一个强大的文本生成模型,增强了文本提示的理解和生成能力。
2024-12-26
COMFY UI中的Repeat或Tile功能
ComfyUI 中的 Repeat 或 Tile 功能: 分块长度(t_tile_length):时间维度上每次处理的帧数,用于处理长视频,如设置为 16。当分块长度与帧数一致时,画面较稳定但变化少。例如,帧数 32 时分块长度可为 24 或 32。 分块重叠(t_tile_overlap):相邻时间块之间重叠的帧数,如设置为 8。 其工作原理为: 1. 将长视频分割成多个重叠的短片段(tiles)。 2. 对每个片段单独进行处理。 3. 在重叠区域使用混合或平滑技术,确保片段之间的过渡自然。 ComfyUI 相关动态: 发布了相对大的版本更新 0.10,支持在 ComfyUI 中使用循环和条件语句,前端代码迁移到 TypeScript,新的搜索和设置 UI,实验性 FP8 算法支持以及 GGUF 量化支持。 ComfyUI 视频背景替换工作流: 用了一个 tile 来固定画面,让采样生成后的视频与原来一致。 资料链接: https://pan.baidu.com/s/1NomdtOR6TbaurTuzGwoMUw?pwd=cycy https://xiaobot.net/post/0e6aa76398a24cc5867c44aca7e887ea 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/4e5232c92746 工作流:https://www.liblib.art/modelinfo/23c073ff88194c32be15fe56977223ef?from=personal_page 视频:https://www.bilibili.com/video/BV1NZHfeREAp/?vd_source=ecb7194379e23ea8b1cb52e3bd5d97ef workflow:https://openart.ai/workflows/e3H4DwH55TlMBlT7MI4A https://www.shakker.ai/modelinfo/9f06f370c1614be89180c1c9fb9864eb?from=personal_page video:https://youtu.be/nf753qp1pLg
2024-12-26
工作流中如何调用插件
在工作流中调用插件的方式如下: 1. 触发器触发: 为 Bot 设置触发器,可选择定时触发或事件触发。 触发时执行任务的方式包括 Bot 提示词、调用插件、调用工作流。 调用插件时,需为触发器添加一个插件,触发后 Bot 会调用该插件获取返回结果并发送给用户。 一个 Bot 内的触发器最多可添加 10 个,且仅当 Bot 发布飞书时生效。 2. 在 Bot 内使用插件: 在 Bots 页面,选择指定 Bot 并进入 Bot 编排页面。 在 Bot 编排页面的插件区域,单击加号图标添加插件,或者单击自动添加图标,让大语言模型自动添加适用的插件。使用大语言模型自动添加插件后,需检查被添加的插件是否可以正常使用。 在添加插件页面,展开目标插件查看工具,然后单击添加。单击我的工具,可查看当前团队下可用的插件。 在 Bot 的人设与回复逻辑区域,定义何时使用插件,然后在预览与调试区域测试插件功能是否符合预期。 3. 在工作流中使用插件节点: 在页面顶部进入工作流页面,然后创建工作流或选择一个已创建的工作流。 在页面左侧,单击插件页签。 搜索并选择插件,然后单击加号图标。 在工作流的画布内,连接插件节点,并配置插件的输入和输出。 需要注意的是,即使是官方插件也可能存在不稳定的情况,需要自己去尝试,找到适合当前场景的插件。
2025-01-14
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
coze工作流中数据库如何应用?主要是返回数据
在 Coze 工作流中,数据库的应用如下: 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。 数据库节点的输入:用户可以定义多个输入参数。 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
2025-01-08
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
coze工作流中的编辑代码如何使用
在 Coze 工作流中,代码的使用方法如下: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求自定义工作流信息,点击确认后完成工作流的新建。 在编辑视图中,左侧「选择节点」模块中,代码节点支持编写简单的 Python、JS 脚本,对数据进行处理。 按照流程图,在编辑面板中拖入对应的代码节点。 例如在艾木的介绍中,利用“Code”组块插入一段 Python 代码,将 Google 搜索返回结果格式化成两个字符串,一个是由搜索结果相关信息拼接而成,另一个是由搜索出来的网页链接拼接而成。这段代码起到了粘合剂的作用,逻辑不复杂,理论上也可以让 AI 帮助生成。
2024-09-30
coze平台中的数据库应用,怎么判断数据是那个用户的,插入数据库节点时,需要明确用户uuid吗
在 Coze 平台中判断数据属于哪个用户,插入数据库节点时通常需要明确用户的唯一标识,如用户 UUID 或类似的唯一标识。 例如,在自动总结公众号内容并定时推送到微信的工作流中,考虑到可能有多个用户同时使用,使用了 server 酱的 sendkey 作为用户的唯一标识(重命名为 suid)。在数据库节点中查询是否已经推送过文章时,需要文章的 url 和用户的 suid 这两个值来判断。 在增加记账记录的工作流中,通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库时,也需要明确相关的用户标识。 在 COZE 工作流中,数据库节点的设置包括输入参数的设置(如参数名、参数值、引用来源)以及在 SQL 输入中添加相应的代码。 总之,明确用户标识对于准确判断数据归属和进行数据库操作是很重要的。
2025-02-25
Build On Trae
以下是关于 Build On Trae 的相关内容: 在 17 号 Waytoagi 举办的“AI 编程从入门到精通 Build on Trae”共学中,跟随大雨在 Trae 里输入“用 Matter.js 做一个有意思的画面”,屏幕上呈现出有趣的交互体验,色块如雪花般生成并降落,具备重力、碰撞、弹性效果。有人瞬间想到将此效果融入消消乐游戏,很快初步的消消乐效果诞生。为让游戏更具挑战性和趣味性,开始加关卡,但关卡逻辑未实现,随后向 Trae 反馈并提出把彩色色块换成 emoji 的新想法,Trae 修改后效果活泼生动。之后又提出在消除 emoji 时添加音效,因音效库不够用,灵机一动播放 emoji 对应的英文单词音效。体验地址:https://pipipeter.github.io/xiaoxiaole/ Trae 的使用步骤: 1. 在电脑上新建一个文件夹,可自行取名,如“helloworld”。 2. 使用 Trae 打开这个新建的文件夹,打开后左上角能看到选中的文件夹名称。然后点击右上角的“Builder”按钮,切换到 Builder 模式。 3. 在对话框输入需求,如输入用 p5.js 画分形树的提示词,点击发送按钮,AI 开始工作。还可以在此基础上继续强化,也可以在 https://openprocessing.org/ 查看各种创意,复制代码放到 Trae 里用 AI 对话优化。
2025-02-23