Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

调研一下AI安全治理这个方向的国内外的团队和人。包括AI安全治理的子方向,每一个子方向国内外有哪些科研院所的哪些团队在做相关方向的工作,以及这些团队有哪些骨干成员,他们有哪些观点。以及这个团队有哪些治理成果,尽量详细

Answer

以下是关于 AI 安全治理方向的国内外团队和人的相关调研:

国外团队和人员

  • OpenAI:首席科学家 Ilya 对模型安全较为关注,提出了通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT-40 Mini 中得到部署。
  • Anthropic:在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本,以警示模型不要被越狱。
  • Gray Swan AI 的安全专家:试用“断路器”,专注于重新映射有害表示,效果比标准拒绝训练更好。
  • 图灵奖得主 Hinton:支持对 AI 监管,认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并在网上签署了联名公开信。
  • 英国:创建了世界上第一个人工智能安全研究所 AISA,具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等核心功能,还发布了 Inspect 框架用于 LLM 安全评估,并宣布与美国等效机构签署谅解备忘录,计划在美国旧金山设立办事处。

国内团队和人员:目前调研内容中未提及国内相关团队和人员的具体信息。

在观点方面,Bengio、Hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,确保大模型是 Safety 的,防止其失控或对人类造成伤害,并签署了联名公开信表达对于 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。吴恩达和 Lecun 则认为模型的能力不足以使其脱离人类的限制。

治理成果方面,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还计划设立一个“AI 安全研究实验室”。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,汇编了常用的红队数据集并根据模型评估它们的成功率。Scale 根据私人评估推出了自己的稳健性排行榜。

Content generated by AI large model, please carefully verify (powered by aily)

References

从 0 到 1 了解大模型安全,看这篇就够了

第二类是白盒攻击:在知道模型参数的情况下对模型进行攻击。例如,下面的工作就是基于梯度的攻击,它自动地找出一段最能引起LLM对毒性问题做出肯定回答的字符串。下面是一些针对越狱问题可以采用的防御手段:接下来是未来与展望;11月以来,LLM最大的一个事件就是OPENAI首席科学家ilya联合董事会解雇了OPENAI的灵魂人物之一:sam altman据匿名人士透露,解雇sam altman正是因为ilya认为过快的商业化将会导致模型安全失控,产生不安全的AI或大模型为什么ilya会有AI必须安全的思想呢,这就不得不提到图灵奖得主,被誉为DL三巨头之一的hinton,hinton是ilya的老师,同时也是支持对AI监管的重要人物之一。bengio,hinton,姚期智等著名研究者认为,大模型及其驱动的AI必须引入安全性监管,确保大模型是Safety的,防止其失控或对人类造成伤害.并且他们在网上签署了联名公开信,用于表达对于AI失控的担忧,呼吁学术界和工业界对大模型进行监管。在10月份,吴恩达以及hinton lecun bengio对于AI安全的问题在社交媒体上进行了激烈的探讨,hinton教授和bengio教授都认为AI安全至关重要而吴恩达和lecun则认为,模型的能力不足以使其脱离人类的限制这场争论的开端就是这封联名信从更长远的角度来说,AI究竟是会成为终结者系列电影中失控,屠杀人类的机器人,还是会像超能陆战队一样,成为我们的伙伴呢?

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

随着AI不断发展,AI应用中的新功能带来新漏洞,现有企业,研究学者已加强对“越狱”的研究。OpenAI提出了通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法。这确保LLM不会为用户和开发人员的指令分配同等优先级。这已在GPT-40 Mini中得到部署。Anthropic在多重越狱方面的工作表明了“警告防御”的潜力,它在前面和后面添加警告文本,以警示模型不要被越狱。与此同时,Gray Swan AI的安全专家已试用“断路器”。它不是试图检测攻击,而是专注于重新映射有害表示,这样模型要么拒绝遵守,要么产生不连贯的输出。他们发现这比标准拒绝训练效果更好。LLM测试初创公司Haize Labs与Hugging Face合作创建了首个红队抵抗组织基准。它汇编了常用的红队数据集并根据模型评估它们的成功率。同时,Scale根据私人评估推出了自己的稳健性排行榜。除了越狱之外,还可能存在更隐蔽的攻击虽然越狱通常是安全挑战中早已公开的事实,但潜在的攻击面要广泛得多,涵盖从训练到偏好数据和微调的所有内容。例如伯克利和麻省理工学院的研究人员创建了一个看似无害的数据集,但它会训练模型响应编码请求产生有害输出。当应用于GPT-4时,该模型始终按照有害指令行事,同时避开常见的保护措施。安全研究LLM能否提高自身可靠性?

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

全球治理英国创建了世界上第一个人工智能安全研究所,美国迅速跟进世界首个人工智能安全研究所AISA有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA还发布了Inspect,一个用于LLM安全评估的框架,涵盖核心知识、推理能力和自主能力等方面。英国宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。政府急于填补关键国家基础设施中的漏洞英国通过其高级研究与发明机构(ARIA),花费了5900万英镑来开发一个“守门员”——一种先进的系统,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还报道称计划设立一个“AI安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性AI的知识。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。随着攻击面扩大,开发人员加大了对“越狱”的研究

Others are asking
COE团队需要什么AI能力,比如AI辅助编程;AI部署+和调优;AI智能体;AI提示词; OCR识别
COE 团队可能需要以下 AI 能力: 1. AI 辅助编程:虽然 AI CODING 目前适用于小场景和产品的第一个版本,但在复杂应用中可能存在需求理解错误导致产品出错的情况。 2. AI 部署和调优:涵盖服务器创建、搭建微信机器人到引入 coze API 的全过程,包括 Docker 部署、本地运行、RailWay 部署等多种方式。 3. AI 智能体:从最初只有对话框的 chatbot 到有更多交互方式,低代码或零代码的工作流等场景做得较好。例如以证件照为例,实现了相关智能体和交互。创建智能体工作流包括创建、编辑人设、编排设计等步骤。 4. AI 提示词:在编写系统提示词时需要用{{input}}作为参数引入,以使大模型知道需要生成与输入相关的结果。 5. OCR 识别:未提及相关具体内容。 同时,在图像能力方面,支持图片生成、图片识别、图生图等,可选择 Dal3、stable diffusion、replicate、midjourney、CogView3、vision 模型。具有丰富插件,支持个性化插件扩展,已实现多角色切换、文字险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件。通过上传知识库文件可自定义专属机器人,作为数字分身、智能客服、私域助手使用,基于 LinkAI 实现。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
通往agi之路是一个怎样的团队
“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 它具有以下特点: 1. 目标是助力每一个怀揣 AI 梦想的人在探索知识的道路上“无弯路,全速前进”。 2. 这里既是知识的消费者,也是知识的创作者。 3. 拥有 200 多个微信群和 140 多个高校群。 4. 举办了 AIPO 等相关活动,活动遵循先共学再以赛代练的学习路径,邀请了 10 位 AI 界大佬分享经验。 5. 有赛博禅心主理人大聪明等人员的参与和支持,赛博禅心公众号有 5000 个 AI 项目详解,可为活动提供灵感。 6. 中科院翟教授曾开场致辞。 7. 提供了 v two agi.com 网站供注册进入知识库。 同时,“通往 AGI 之路”还有众多友情链接,涉及麦橘、orange、Web3 天空之城、Ragnar 瑞哥那、海辛、三思、云中江树、陈财猫、阿文等在 AI 领域的不同角色,如产品经理、艺术家、工程师等。
2025-03-22
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
哪里可以找到了解AI模型微调和RAG知识库的外包开发团队?
以下是一些可能找到了解 AI 模型微调和 RAG 知识库的外包开发团队的途径: 1. 相关技术社区和论坛:例如一些专注于 AI 开发的社区,开发者可能会在其中分享经验和提供服务。 2. 专业的自由职业者平台:如 Upwork、Freelancer 等,您可以在这些平台上发布需求,寻找合适的团队或个人。 3. 参考行业报告和研究:部分报告中可能会提及相关的优秀开发团队或公司。 4. 联系 AI 领域的知名机构或公司:他们可能会推荐或提供相关的外包服务。 5. 社交媒体和专业群组:在如 LinkedIn 等社交媒体上的 AI 相关群组中发布需求,可能会得到相关团队的回应。 另外,从提供的资料中,以下信息可能对您有所帮助: 红杉的相关分析提到,迁移学习技术如 RLHF 和微调正变得更加可用,开发者可以从 Hugging Face 下载开源模型并微调以实现优质性能,检索增强生成(RAG)正在引入关于业务或用户的上下文,像 Pinecone 这样的公司的向量数据库已成为 RAG 的基础设施支柱。彬子的经历中,有出海垂直领域 Agent 平台的项目经理咨询 RAG 策略优化。2024 人工智能报告中提到对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题得到解决。
2025-03-04
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
未来ai发展有什么方向性的可能,尤其对于产品运营的启发
未来 AI 发展具有以下方向性的可能,对产品运营有如下启发: 1. 从通用能力到专业化细分: 早期通用型 AI 产品如 ChatGPT 吸引大量用户,但难以满足多样化需求。 如今越来越多 AI 产品专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具),每个细分领域的产品不断提升核心能力,为用户提供更精准和高质量服务。 2. 商业模式的探索与创新: ToB 市场深耕,如针对内容创作者的 ReadPo,为专业用户提供高效工具。 新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领主题词实现变现。 AI 产品从技术展示向解决用户痛点和创造商业价值转变。 3. 公司未来的样貌: AI 是生产力革命,将通过 AI 网络协同工作,推动对新型基础设施的需求。 未来公司建设可能成为 AI Agent 的工作,公司可能像神经网络一样工作。 下一代公司规模可能更小,但数量会增加,具有新的组建方式、所有权和管理结构。 未来公司将需要解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品,软件数量将不断扩张和变化,代码生成和软件代理业务将更定制化和快速迭代。 4. 具体应用场景: 企业应用:提示词工程重要性凸显,带来超级个性化服务、预测性决策能力、自动创新设计能力、自动识别和优化内部流程。 交通领域:自动驾驶汽车提高安全性和效率,优化信号灯和流量。 物流配送:优化路线和计划,降低成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据提高产量和质量。 人工智能时代下最重要的三个基石是数据、算法和算力,相关资源如: 算力: 数据:
2025-04-10
未来ai发展尤其对于腾讯的发展有什么方向性的可能
以下是关于腾讯在未来 AI 发展方向的一些可能: 1. 2024 年数字科技趋势:从连接、交互、计算和智能四个维度,对 100 多项未来技术和重点方向给出趋势性判断。包括星地直连的卫星互联网、垂直起降飞机的未来交通网、能源、信息和交通的多网协同,使未来网络连接的广度和深度都迎来无限可能。报告下载地址:(发布时间:2024/01/23) 2. 金融业大模型应用:强调大模型技术对金融业带来的革命性影响,包括提高效率、降低成本、创新服务和优化风险管理等方面。通过深入分析多个案例,展示大模型在金融服务、风险管理、客户服务和营销策略等领域的应用,同时指出实施大模型技术面临的挑战,如数据隐私、算法偏见和监管合规等。报告下载地址:(发布时间:2023/11/30) 3. 在基础模型和开源生态方面: 合成数据方面:量变不能直接产生质变,质量和结构至关重要;需要从扩充数据转向创造知识,通过系统化方法提升训练数据质量。 游戏开发、影视制作、工业设计、VR 构建等领域:面临数据积累和模型优化以实现产业赋能的挑战,当前瓶颈包括训练数据稀缺和泛化能力有限,未来方向可能是 GANs 数据生成和迁移学习优化。 材质还原方面:基于几何模型的空间结构特征生成真实感材质与纹理映射,纹理生成方法多元化,核心技术不断突破,AI 赋能加速发展,应用场景持续扩展。
2025-04-10
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
个人AI助手可以有什么方向的应用
个人 AI 助手的应用方向广泛,包括但不限于以下几个方面: 1. 教育培训: 数字教师:如让牛顿亲自授课《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。可以与历史人物对话交流,不受时空限制,实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 数字陪伴:作为孩子的玩伴,给予赞美等社会奖励,促进儿童成长和提高学习成绩。 2. 宠物相关: AI 宠物助手:基于自然语言处理和计算机视觉,帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,如会自主移动并引起宠物注意、会发声和互动的玩具等。 AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 3. 信息检索与分析: Google Gemini 的 Deep Research:智能信息检索与分析工具,基于主题快速检索全网资源并生成综合报告,支持导出为 Google Docs 文档格式,适合学术研究、内容创作、行业分析等场景,整合了 Google 核心数据源,结合模型多模态处理能力,可处理大量上下文信息。 第四范式发布的桌面端 AI 搜索工具:基于人工智能技术的全能搜索助手,提升用户在本地文件、即时通信、网盘等各类在线应用中的搜索体验,可通过简单描述查询意图进行模糊搜索,支持实时预览搜索结果。
2025-04-01
智能体的发展方向
智能体的发展方向主要包括以下几个方面: 1. 在品牌卖点提炼中的应用: 构建智能体时,对结构的理解和控制至关重要,可通过不断迭代完善单点。 品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性,如电商产品和线下实体服务行业的不同触点和人员情况。 营销管理结构化提示词中,不要依赖举例,避免限制 AI 发散思维,智能体作为灵感助手辅助决策。 2. 一分钟提升认知系统: 具有创新性、实用性、互动性和可扩展性。 能为用户提供高效学习体验、满足不同需求、提供个性化学习方案。 未来将进一步完善知识库、引入先进技术、提供更多个性化方案。 注重用户体验,具有强大知识储备和高效学习机制,能提升用户认知水平,有良好扩展性和创新潜力。 3. DeepSeek R1 及智能体: R1 与 V3 效果对比:V3 中规中矩,R1 思考慢但答案更具针对性和实用性。 R1 的推理特点:类似人类慢思考,结合行业特点给出重要事项和先后顺序。 模型的运算原理:快思考是概率预测,慢思考在概率预测基础上做二层逻辑。 不同模型的适用:指令遵循领域 instruct 模型效果好,推理和创造性问题适合慢思考推理模型。 模型的未来发展:DeepSeek R1 的强化学习方式带来新思路,大模型可通过自学习、增流蒸馏等方式进化和迁移知识能力。 大语言模型特点:DeepSeek R1 是纯文本类大语言模型,原生无识别图、读网页等能力。 与聊天机器人区别:网页聊天机器人做了很多智能体处理,大语言模型本身未被训练。 记忆处理方式:有多种实现长记忆的方案。 智能体构成:由让大语言模型感知外部世界的工具、输出结果的能力、记忆世界观的浓缩规划以及大语言模型本身构成。 智能体重要性:未来编程将变成编造智能体,智能体是承载 AI 应用落地的最终形态。
2025-03-29
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
AI生成PPT,介绍员工持股平台2024年的治理情况
很抱歉,目前知识库中没有关于使用 AI 生成介绍员工持股平台 2024 年治理情况 PPT 的相关内容。但我可以为您提供一些思路和建议来帮助您完成这个任务。 首先,您需要明确 PPT 的结构和主要内容板块。比如,可以包括员工持股平台的概述、2024 年的治理目标和策略、治理成果和关键数据、面临的挑战和解决方案、未来展望等。 在使用 AI 工具生成 PPT 时,您可以向工具清晰地描述每个板块的具体要求和重点内容。例如,对于治理成果板块,您可以要求 AI 突出显示关键的数据和图表,并进行简洁明了的解读。 同时,您还可以参考一些现有的优秀 PPT 模板和案例,以获取更多的灵感和设计思路。 希望这些建议对您有所帮助,如果您还有其他问题,请随时向我提问。
2025-03-22
AI安全治理这个方向的国内外的团队和人
以下是 AI 安全治理方向的国内外团队和人员相关信息: 美国:拜登签署了 AI 行政命令,美国政府已就 AI 治理框架与多国进行了广泛协商,包括澳大利亚、巴西、加拿大、智利、欧盟、法国、德国、印度、以色列、意大利、日本、肯尼亚、墨西哥、荷兰、新西兰、尼日利亚、菲律宾、新加坡、韩国、阿联酋和英国等。此外,美国迅速跟进世界首个人工智能安全研究所 AISA,美国能源部也一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 英国:创建了世界上第一个人工智能安全研究所 AISA,AISA 有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。 OpenAI:OpenAI LP 约有 100 名员工,分为技术能力(推动 AI 系统功能发展)、安全保障(确保系统符合人类价值观)和政策治理(确保适当治理系统)三个主要方向。
2025-02-20
国际做AI安全 治理的团队
以下是一些国际上从事 AI 安全治理的团队和相关情况: 英国创建了世界上第一个人工智能安全研究所(AISA),其具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。此外,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 需要注意的是,全球在 AI 治理上的合作存在尴尬局面,承诺多而实际行动少。同时,国家和地区法规存在角力,美国和欧盟等国家或地区正在通过有争议的国家层面立法。
2025-02-20
非结构化数据治理
以下是关于非结构化数据治理的相关信息: 在 AI 新产品方面: JamGPT AI Debug 小助手:https://jam.dev/jamgpt ChatGPT2D 用于生成二维知识图谱:https://www.superusapp.com/chatgpt2d/ Motörhead by metal 是用于 LLM 的开源内存和信息检索服务器:https://github.com/getmetal/motorhead 在网页抓取工具方面: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ 在个人数据处理方面: Bloks 可自动处理个人笔记、任务列表和会议记录:https://www.bloks.app/ Lettria 用于处理个人文本材料:https://www.lettria.com/ Quadratic 可使用 AI、Python、SQL 和公式分析个人数据:https://www.quadratichq.com/?ref=producthunt 在向量数据库方面,以电影网站为例,传统搜索在处理语义搜索和对非结构化数据(如图像、音频等)的相似性搜索时存在问题,比如用户输入“电影像《星球大战》一样令人兴奋”或上传一张电影《银翼杀手》的海报,传统关系数据库或 Excel 难以理解和返回相关搜索结果。 在金融行业,非结构化数据主要涉及报告(如年度报告、季度报告等公司财务报告)、公告(如董事会公告、监事会公告、股东大会公告等)、上市资料(如招股说明书等公司上市相关文件)。
2025-01-24
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
全球人工智能治理研究报告
以下是为您整合的关于全球人工智能治理研究报告的相关内容: 2024 AI 年度报告: 正确预测: 好莱坞级别的制作公司开始使用生成式人工智能来制作视觉特效。 美国联邦贸易委员会(FTC)或英国竞争与市场管理局(CMA)基于竞争理由调查微软/OpenAI 的交易。 在全球人工智能治理方面,进展非常有限,会超出高层次的主动承诺。 一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单。 随着推理工作负载和成本的显著增长,一家大型人工智能公司(例如 OpenAI)收购或建立了一个专注于推理的人工智能芯片公司。 错误预测: 有生成式人工智能媒体公司因其在 2024 年美国选举期间的滥用行为受到调查。 自我改进的人工智能智能体在复杂环境中(例如 AAA 级游戏、工具使用、科学探索)超越了现有技术的最高水平。 科技 IPO 市场解冻,至少看到一家以人工智能为重点的公司上市(例如 DBRX)。 2024 人工智能报告: 英国创建了世界上第一个人工智能安全研究所,美国迅速跟进。世界首个人工智能安全研究所 AISA 有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect,一个用于 LLM 安全评估的框架,涵盖核心知识、推理能力和自主能力等方面。英国宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 政府急于填补关键国家基础设施中的漏洞。英国通过其高级研究与发明机构(ARIA),花费了 5900 万英镑来开发一个“守门员”——一种先进的系统,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。随着攻击面扩大,开发人员加大了对“越狱”的研究。 2024 年人工智能现状: 全球治理的尴尬局面:全球在 AI 治理上的合作就像一场尴尬的华丽晚宴,大家都不知道该说些什么——承诺满天飞,实际行动却寥寥无几。 国家和地区法规的角力:疫情之后,越发魔幻的世界让我产生了世界在玩一种很新的“闭关锁国”,美国和欧盟等国家或地区正在通过有争议的国家层面立法,科技公司在这场与监管巨头的博弈中,还需面对自身可持续性目标的挑战——发展 AI 的排放量简直就像是一场全国范围的 SUV 自驾游,环保得让人哭笑不得。
2025-01-02