直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

coze工作流中提示词优化节点有吗?

回答

在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

基础教程: Coze “图像流” 抢先体验

这个节点还是比较容易理解的,如果我们觉得自己提示词需要优化,加入它进行优化。参数也很简单,就一个要优化的提示词。[heading3]试用效果[content]通常这一类的节点很好用。我们用一开始就在用的文生图提示词:1 girl in real world来试试。这里我们用优化前和优化后都生成一张图,也做个效果对比:它给我把提示词优化成以下内容:它为我们添加了很多具体的信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。来看下实际文生图效果对比:---修改后的提示词貌似很难把图片控制在真实照片的感觉,测试结果中它的文生图模型中“in real world”来控制更真实的图片生成效果比“realistic”效果好的多。(😂喜欢哪个见仁见智了,不过也有抽卡的因素在。至少右边的打光的感觉不错。)[heading1]智能抠图[heading3]节点参数[content]参数只有一个,就是要抠的图片,如果是前一个节点连线进来,只要引用输出的图片即可。[heading3]试用效果[content]如果是随便生一张图,会发现抠图效果一般,因为头发的关系,抠的边缘没有到极致:💡小技巧:如果用生成的图,可以在提示词里要求背景是和图中主体呈现大对比度的纯色,比如“背景是白色”:💡小技巧:如果是自己上传的图,尽量选择边缘比较平整,背景和主体有明显对比的图。[heading1]画质提升[heading3]节点参数[content]也是很简单的一个节点,就一个参数是要改的图。[heading3]试用效果[content]嗯,效果有一点,图片分辨率变大了,文件大小也变大了,从25k的图变成了1.5m

Coze 复刻:吴恩达开源的 AI 翻译项目,简单几步提升 AI 翻译质量

首先,我们在Coze上新建一个工作流,逐步导入吴恩达项目的核心流程。整个工作流分为若干个节点,每个节点完成一个特定的任务。通过将这些节点组合起来,就形成了一个完整的翻译流程。我们先来看看导入后的整体工作流,以及它的测试效果。我们可以看到,工作流被分为了初始翻译、反思优化、结果输出几个主要部分,每一部分都对应了若干个节点。当我们运行测试的时候,可以清晰地看到每个节点的执行过程和结果。给大家展示一下测试的效果,我们输入一段英文,让工作流自动翻译成中文。这样一对比,优化后的翻译感觉就好多了,语句通顺了很多,用词也更加准确贴切,整体的翻译质量有了不少的提升。接下来,我就对每个节点的配置做一个核心讲解,让大家学会如何根据自己的需求来定制翻译流程。1.首先是开始节点,在这里我们需要选择翻译的源语言和目标语言,比如英语到中文。我们还可以设置一些其他参数,比如翻译的语言特色等,这个参数会影响翻译的效果和效率,不过我将其作为可选选项,建议根据实际情况进行调整。1.接下来是初步的翻译大模型节点,这里我们需要选择一个大模型,来对源语言文本进行初始翻译,这样才好对比并且以此作为进一步的反思优化。Coze平台提供了多种AI大模型选择,这里我直接选了MiniMax,然后提示词我们就直接参考吴恩达教授的相关内容即可。提示词:1.接下来就是选择器节点,因为我们需要判断用户填写的要求中有没有需要特别的语言翻译特色或者口音,如下图:

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

为了节省文章篇幅,后文不再重复说明完成任何一个节点的配置后,我们都需要进行试运行测试,验证节点的运行效果,步骤如下:步骤一:点击「测试该节点」步骤二:按格式要求,输入待测试的输入内容如果是array等其他格式,请自行对话AI或搜索网络,确认格式要求步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”,以提升对生成内容的约束力。当多次测试时,输入与输出都符合预期时,恭喜,你可以进入下一个子任务的配置啦🎉

其他人在问
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
coze工作流中的编辑代码如何使用
在 Coze 工作流中,代码的使用方法如下: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求自定义工作流信息,点击确认后完成工作流的新建。 在编辑视图中,左侧「选择节点」模块中,代码节点支持编写简单的 Python、JS 脚本,对数据进行处理。 按照流程图,在编辑面板中拖入对应的代码节点。 例如在艾木的介绍中,利用“Code”组块插入一段 Python 代码,将 Google 搜索返回结果格式化成两个字符串,一个是由搜索结果相关信息拼接而成,另一个是由搜索出来的网页链接拼接而成。这段代码起到了粘合剂的作用,逻辑不复杂,理论上也可以让 AI 帮助生成。
2024-09-30
扣子工作流中能不用代码实现简单的数据处理吗
在扣子工作流中,是可以不用代码实现简单的数据处理的。例如,通过一些插件和大模型节点可以完成部分数据处理任务。 在生成有趣的《图文短句》的工作流中,包括多个步骤,如通过大模型生成标题、简介、文案等,并进行归纳总结和传递给图像流等。 在一泽 Eze 的教程中,提到在 Coze 上搭建工作流框架时,左侧“选择节点”模块中实际用到的有插件、大模型和代码。插件可提供一系列能力工具,大模型用于实现各项文本内容的生成,代码支持编写简单的 Python、JS 脚本对数据进行处理。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。但对于一些简单的数据处理,不使用代码,依靠插件和大模型也有实现的可能。
2024-09-30
如何在agent 工作流中间加入对话窗口?
在 agent 工作流中间加入对话窗口可以参考以下步骤: 1. 对于分段输入正文,考虑到对照精读环节适合批处理形式,需要把正文分割,用 LLM 节点批处理每一段的对照精读,最终拼合精读结果以输出完整文本。用户输入原文的格式一般是:为了确保正确区分标题句和段落内容,直接在 AI 对话窗口中通过开场白提示用户按格式输入文章,用“”符直接标记标题句。然后用 Python 脚本去掉标题句,并把剩下内容按照段落的换行逐段输出为 Array<String>格式,同时附上 Python 代码。试运行后,节点会按照预期分次输出每一段原文。 2. 在点击“发布”发布工作流后,创建一个 bot 进行最终的工作流封装。封装过程包括:创建 Bot、填写 Bot 介绍、切换 Bot 模式为“单 Agent(工作流模式)”(因为此 Agent 只需在每次输入英文文章时返回精读结果,不需要外层 bot 对输入进行其他任务理解,直接调用工作流即可)、把配置好的工作流添加到 Bot 中、填写开场白引导用户使用,并关闭开场白预置问题(因为使用流程里用不到)。
2024-09-20
coze工作流中的消息节点如何在bot中使用
在 Coze 工作流中,消息节点在 Bot 中的使用如下: 1. 消息节点支持在工作流执行过程中返回响应内容,可解决回复消息内容多或工作流长导致用户无法及时收到响应的问题。它支持流式和非流式两种消息模式。 2. 一个消息节点包含以下配置: 输出变量:配置输出变量,可将其添加到下方的回答内容区域中,Bot 调用工作流时只会回复设定的“回答内容”,这些变量也可在配置卡片时使用。 回答内容:工作流运行时,Bot 将直接用这里指定的内容回复对话,可使用{{变量名}}的方式引用输出参数中的变量。 流式输出: 默认关闭,即采用非流式输出,待接收到全部消息内容后,再一次性输出全部消息内容。 开启流式输出后,上一节点一边生成回复内容,一边通过消息节点进行输出,不需要等待全部内容都加载完后再返回,类似于打字机的效果。 3. 在 Coze 中,消息组件是常用的工作流节点,用于实现工作流在执行途中与用户之间的交互。默认情况下,消息组件的流式输出功能是关闭的,当面对长文本或希望优化用户体验时,可以启用流式输出,以提升用户体验,例如在实时聊天 Agent 中,能显著提高用户的参与度和满意度。
2024-09-18
我给出一段文字,要AI唱出来的工具有吗
以下是一些可以将文字唱出来的 AI 工具: 1. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。网址:https://www.udio.com/ 2. Suno AI:是一款革命性的人工智能音乐生成工具。 网址:https://suno.com/create 优点:回答问题更准确、上下文的衔接更好。 限制:需要翻墙,需要邮箱注册。 时间:10 分钟。 价格:每日有免费额度 10 首歌。 Custom Mode:开启为自己有歌词,关闭则给你随机生成歌词,只要填描述。 Lyrics:直接填歌词即可,可以用熟悉的、喜欢的歌曲原词先感受一下产品功能,会有对比性。 Instrumental:不要歌词、直接出纯音乐的曲子。 Style of Music:写 Prompt 的地方,1 句简短的自然语言描述即可,注意最多 100 字符。 内容由 AI 大模型生成,请仔细甄别。
2024-11-13
网页版的 不需要注册的 数据分析AI工具有吗
目前,大多数较为专业和功能全面的数据分析 AI 工具都需要注册才能使用。未注册就能使用的网页版数据分析 AI 工具相对较少。不过,您可以通过搜索引擎进一步查找,看是否有新出现的符合您需求的工具。
2024-09-24
ai转绘线上使用有吗
以下是关于 AI 转绘线上使用的相关信息: 如果您在工作中需要大量图片,AI 生图是高效的解决办法。主流工具如 midjourney(MJ)付费成本较高,stable diffusion(SD)硬件门槛不低,但也有免费在线 SD 工具网站,如。 从游戏截图升级到 KV 品质时,线上平台可用于找参考、测试模型。在绘图广场上发现想要的画风,点击创作会自动匹配创作使用的模型、lora 和 tag。截取游戏人物底图,将线上平台有限算力集中在人物身上,多批次、多数量尝试不同画风,得出符合游戏的模型+lora 组合,最后在 C 站()下载对应模型到本地加载部署后可正式生图。 对于电脑配置不够无法本地部署 SD 的情况,可选择在线体验。如哩布哩布 AI,其在线 SD 界面与本地部署区别不大,每天有一百次生成次数,已集成最新的 SDXL 模型。还可在 stability AI 公司推出的 Clipdrop(https://clipdrop.co/stablediffusion)上生成,和 midjourney 使用方法相似,输入提示词即可直接生成,每天免费 400 张图片,需排队,出四张图大概二三十秒。
2024-09-01
央视的AI我中华教程文档有吗?
链接里有相关的教程,以下是相关的文章信息: 2024 年 3 月 20 日,黄社长用 AIGC 生成了一条全国文旅宣传片《AI 我中华》,也被央视转载了,全流程使用 AI 制作,利用 AI 生视频及 AI 配音技术,让 34 个省级行政区的名字和当地特色巧妙结合,展现大美中华。 《思维模型地图》这份文档是混沌大学上海分社提供的思维模型和商业策略汇编,涵盖了创新、组织心智、沟通视窗、RPV 框架、心理学模型、用户体验、创新评估、购买决策、组织文化、学习方法和商业模式等多个方面。它旨在帮助读者通过不同的框架和模型来提升思维能力、决策质量和组织效能。
2024-05-10
让gpt写suno作曲的prompt有吗
有的,您可以参考以下prompt: Suno创作音乐的小技巧:来自 1. 如果您想参考某个现有歌曲的节奏,可以在这个网站查询歌曲的BPM和Key,作为提示词写进去。 2. 歌词里,可以在歌词段落前加(引子)怎样更好的来告诉AI这段歌词应该怎么唱。 以上是一些关于让 gpt 写 suno 作曲的 prompt 建议,您可以根据自己的具体需求进行调整。
2024-05-05
如何使用coze
使用 Coze 的步骤如下: 1. 先跑起来,创建第一个 bot: 打开 coze.cn/home,点击创建 Bot。 输入随便的信息,如“尝试联网”。 尝试询问:今天的 hacker news 上有什么新闻?可能会答不出。 了解到 AI 如同书呆子,聪明但不出门不知外事也不会交流。 引入联网插件 WebPilot,插件> + >选择 WebPilot,重新尝试联网,再次询问上述问题可能成功。 2. 用上「回复逻辑」,让它能将链接转换成回答。 3. 发布到飞书,基本成型。 4. 【进阶】使用工作流/workflow & 代码/code,更灵活自定。 安装 Coze Scraper 并采集数据的步骤如下: 1. 登录。 2. 在左侧菜单栏,选择一个工作区。 3. 在工作区内,单击知识库页签。 4. 创建一个知识库或点击一个已存在的知识库。 5. 在知识库页面,单击新增单元。 6. 在文本格式页签下,选择在线数据,然后单击下一步。 7. 单击手动采集,然后在弹出的页面点击权限授予完成授权。 8. 在弹出的页面输入要采集内容的网址,然后单击确认。 9. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 10. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。更多关于知识库的内容,详情请参考。
2024-11-17
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。其参数很简单,只有一个要优化的提示词。 通常这类节点很好用。例如用一开始就在用的文生图提示词“1 girl in real world”来试试。优化前和优化后都生成一张图做效果对比,它会为我们添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片为真实照片的感觉上,测试结果中文生图模型中“in real world”来控制更真实的图片生成效果比“realistic”效果好。(喜欢哪个见仁见智,不过也有抽卡因素,至少右边的打光感觉不错。)
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。 参数很简单,只有一个要优化的提示词。 例如,用一开始就在用的文生图提示词“1 girl in real world”来试用。优化后会为提示词添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”来控制比“realistic”效果好。
2024-11-16
coze中的提示词优化节点在哪里
在 Coze 中,提示词优化节点的相关信息如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。参数很简单,只有一个要优化的提示词。 以文生图提示词“1 girl in real world”为例进行试用,优化后添加了很多具体信息,如在带着好奇心看书、环境中有阳光、色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制效果比“realistic”好。 此外,Coze 还涉及其他节点,如智能抠图、画质提升等。在复刻吴恩达开源的 AI 翻译项目时,工作流分为新建工作流、导入核心流程、设置节点等步骤,包括选择翻译的源语言和目标语言、选择大模型、配置反思优化的提示词等。
2024-11-16
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
学习coze的教程
以下是一些学习 Coze 的教程资源: 概览与介绍:https://waytoagi.feishu.cn/wiki/YGgzwDfWLiqsDWk2ENpcSGuqnxg 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb 大聪明:保姆级教程:Coze 打工你躺平 https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb Coze “图像流”抢先体验 https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ 一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力 阅读指南:长文预警,请视情况收藏保存 核心看点:通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法 适合人群:任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2024-11-15
Florence节点和模型下载方法
Florence 节点和模型的下载方法如下: 节点下载: 方法一:从节点管理器中安装(注意结尾是 V2.6int4 的那个)。 方法二:在秋叶包中安装(注意结尾是 V2.6int4 的那个)。 方法三:直接下载下面文件解压,复制 ComfyUI_MiniCPMV2_6int4 文件夹到您的“\\ComfyUI\\custom_nodes”目录下。注意 ComfyUI_MiniCPMV2_6int4 文件夹里面直接就是多个文件不能再包文件夹了。 夸克网盘:链接:https://pan.quark.cn/s/bc35e6c7e8a6 百度网盘:链接:https://pan.baidu.com/s/1sq9e2dcZsLGMDNNpmuYp6Q?pwd=jdei 提取码:jdei 模型下载: 模型下载地址(解压后大小 5.55G,压缩包大小 4.85G): 夸克网盘:链接:https://pan.quark.cn/s/98c953d1ec8b 百度网盘:链接:https://pan.baidu.com/s/1y4wYyLn511al4LDEkIGEsA?pwd=bred 提取码:bred 此外,Joy_caption 相关模型下载: 从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 必须手动下载: https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 ,存放文件夹:models/Joy_caption 。 MiniCPMv2_6 提示生成器 + CogFlorence: https://huggingface.co/pzc163/MiniCPMv2_6promptgenerator https://huggingface.co/thwri/CogFlorence2.2Large TheMisto.ai 的 MistoLine 版相关: 节点: MistoControlNetFluxdev ,在您的 \\ComfyUI\\custom_nodes 文件夹里面右键终端命令行,复制相关代码即可下载,或者通过以下网盘下载: 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到您的 ComfyUI\\models\\TheMisto_model 文件夹中,并导入官方工作流 。
2024-10-22
人工智能发展的流程图上面有相关人物与重要时间节点或重大事件
以下是人工智能发展的流程图相关内容,包含重要人物与重要时间节点或重大事件: 二十世纪中叶,人工智能领域开启。最初符号推理流行,带来专家系统等重要进展,但因提取知识成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。 近现代,计算机科学发展为人工智能研究奠定基础,人们尝试用机器模拟人类思维。 1950 年,英国数学家阿兰·图灵提出著名的“图灵测试”。 1956 年,人工智能一词被提出,达特茅斯会议举行。 1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。 2016 年,AlphaGo 在围棋比赛中战胜李世石。 2020 年,GPT3 发布。 2022 年,DALLE 发布。 2023 年,GPT4 发布。 2024 年,预计发布 GPT5 。 随着时间推移,计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被用作“神经网络”的同义词。
2024-09-16