Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?

Answer

目前消耗大量算力的行业和企业主要包括以下方面:

  1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。
  2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。
  3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。
  4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。

对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。

Content generated by AI large model, please carefully verify (powered by aily)

References

周鸿祎免费课AI系列第一讲

周鸿祎:我纠正一下,刚才那个小伙子给我挖了一个坑,我真的不是中国最懂AI的人,中国有很多懂AI的人,人家作为科学家不爱表达,不说。还有很多懂AI的人不屑于跟你们交流,还有很多懂AI的人他讲你也听不懂。我只是恰好喜欢思考,用普通老百姓的语言能够把一些东西会的由浅入深。第二,我觉得要弄AI就上我的课,我今天讲了AI认知方面的东西,先建立AI的信仰,然后要去使用一些AI的产品,建立一些基本的了解,下场我专门讲企业级AI如何做,你就参加下一节课好了。提问:我是在北京做拍卖公司的,江苏有一个数字科技公司。所以,我想问一下,做我们普通企业,对底层的基础设施还有没有什么样的一个前景?底层的基础设施和应用场景不是两个入口吗?周鸿祎:小公司肯定就不要碰基础设施了,基础设施现在要么是做云,在云端有很多显卡,智算中心的服务是非常巨大的,我不觉得会有小公司的机会。但是,如果给当地的企业做AI训练,提供一些算力支持,我觉得可能是有一定的机会。但是,你就要提供一支服务团队,因为你光有算力是不够的,当地的企业需要有人帮他整理知识,寻找业务场景,做垂直训练,做微调,最后做业务的融合,你得有一支服务的力量才能把你的算力能发挥出来,所以你应该找个合作伙伴。提问:中国互联网现在过度移动化,导致PC上,很多巨头网站,像新浪、京东,PC端网站十几年都不更新了。但是,我们看到AI也好,国外很多创新的产品也好,都是从PC端开始参与的,这个趋势在您看来是一个不好的,是未来会扭转的,还是说中国来说就是一个合理的现象?

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

类比电力革命,从第一个灯泡被点亮到首座发电设施被发明出来,花了十年时间,然后又花了五十多年渗透到各行各业;这一轮AI革命的起点应该是2012年的AlexNet,由神经网络驱动的人工智能再次回到历史舞台,差不多也是十年后,革命意义的ChatGPT诞生,完全证明了在有效的架构Transformer之上,叠加算力和数据就能出奇迹;这个组合就像发电站一样可以源源不断的输出智能,后面要做的事情就是扩大规模的同时降本增效,覆盖全行业。配图3.04:我们还处于AI革命的早期去年八月,Elon Musk在首次对外演示Tesla FSD12的一次Twitter Space中,提到他对算力和能源的看法:“我们90%的数据中心都变成为算力中心,提供加速计算;人类很快会变成强计算依赖,未来80-90%的能源都会用在计算上”。再回头看看我们现在的基础设施之中,用于AI算力的占比有多少?大约2%,Coatue在今年初的一份LP报告中提到了这个数据。现在正处于AI基础设施第二轮的升级浪潮之中:AI服务器的占比:9%AI在整个半导体行业的收入占比:10%AI数据中心电力消耗的占比(美国):2+%AI云计算收入的占比(Amazon&Microsoft):~3%从百分之九到百分之九十,AI数据中心的升级才刚刚开始。因此,这次智能革命,会让芯片和数据中心业务最先受益,从Nvidia的股价就能看出;另外业务用量的提升,AI云计算收入,其实主要是模型托管的收入,将成为云计算公司的主要收入。配图3.05:AI对电力消耗的预估

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

在边缘,拥有最佳使用场景的将胜出。中心算力:科技巨头要发展终端算力,其一,是为了缓解云端的瓶颈,未来大多数的智能任务都是简单的能在终端直接完成的;其二,云端必须承担复杂的推理任务,这是个人、企业还有科研的高级智能需求;最后一个最重要的任务就是训练模型了。Elon Musk说接下来拥有100亿美元以上的算力投入的公司,才能进入AI研发的第一梯队,所以xAI就立刻宣布了计划用十万块H100连成一个巨大的集群,称之为“Gigafactory of Compute”;不过截止到目前,根据SemiAnalysis透露的消息,Google才是真正的GPU Rich,他们自家的TPU加上Nvidia的GPU,算力多到溢出,现在训练Gemini最新版的算力规模高达~1e26 FLOPS,比OpenAI用来训练GPT-5的要大四倍左右。所以OpenAI才要拉上微软,让他出资一千亿美金打造史上最豪华的算力中心StarGate,算力能飙升到多少尚不清楚,但设计中5G瓦的电力需求,已经占到2023全美国数据中心能耗的70%了,看来投资核聚变势在必行。。在云端,拥有最多算力和最优数据的将胜出。Apple在最新的WWDC正式发布了Apple Intelligence,其中架构上最有趣的部分就是Apple’s On-Device and Server Foundation Models,边缘和远端混合的组合模型,用Private Cloud Computing技术端到端加密保证用户数据安全。在这个架构之下,每个iCloud用户都能够拥有属于自己独特的微调模型,做到基础模型跟着用户一起进化。Apple正在用自己边缘都优势弥补大语言模型的后发劣势。配图3.07 Apple Intelligence-Private Cloud Computing

Others are asking
Nvidia 显卡算力天梯图
以下是为您提供的关于 Nvidia 显卡算力天梯图的相关信息: 算力是指计算能力,可直接理解为显卡的性能。在电脑中,显卡就是 GPU,一张显卡的重要参数包括 GPU 和显存。 GPU 是一种专门做图像和图形相关运算工作的微处理器,其生产商主要有 NVIDIA 和 ATI。GPU 的强大主要决定了生图和训练的效率,越强大的算力在生图(推理)和训练上消耗的时间就越短。显存在生图过程决定了直接推理的图片大小,在训练时受制于训练工具的要求,显存容量是门槛。 在选择算力时,需要综合 GPU 性能和显存大小两个参考维度。由于需要使用到 CUDA 加速,显卡大概率只能选择 NVIDIA 的。 以下为您提供一些可能不太具备时效性的参考资料: 1. 各种显卡的稳定扩散性能测试报告(需要科学?️):https://docs.google.com/spreadsheets/d/1Zlv4UFiciSgmJZncCujuXKHwc4BcxbjbSBg71SdeNk/editgid=0 2. GPU 测评结果方便大家选购:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=reciB9KZtj&table=tblyh76bHrCi4PXq&view=vewUunvDn1
2025-03-02
comfyui算力平台
以下是关于 ComfyUI 算力平台的相关信息: 揽睿: 属性:云平台 邀请链接:https://lanruiai.com/register?invitation_code=0659 备注:WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长 厚德云: 属性:云平台 邀请链接:https://portal.houdeyun.cn/register?from=Waytoagi 备注:厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度飞桨: 属性:云平台 邀请链接:https://aistudio.baidu.com/community/app/106043?source=appCenter 备注:新注册 2 个小时。,明天给大家发放 50 小时的算力 阿里云 PAI Artlab: 属性:云平台 邀请链接:直达地址:https://developer.aliyun.com/topic/paisports 备注:登录后领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw onethingai: 属性:云平台 邀请链接:https://onethingai.com/invitation?code=dyAK4vY5 以云平台揽睿为例,搭建自己第一个 Comfyui 的方法如下: 1. 进入「应用启动器」页面,选择「comfyui 官方启动器」,点击「部署」按钮,点击「立即创建」,会进入「工作空间」页面。 2. 创建完成后稍等片刻,无需其他任何操作,等待「打开应用」按钮可点击后,点击该按钮就可以打开 comfyui 界面使用啦。 3. 启动/出图/训练进度可进入工作空间详情 日志查看。
2025-02-25
comfyui算力
以下是一些关于 ComfyUI 算力的相关信息: 云平台: 揽睿:云平台,邀请链接为 https://lanruiai.com/register?invitation_code=0659 ,WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长。 百度飞桨:云平台,邀请链接为 https://aistudio.baidu.com/community/app/106043?source=appCenter ,新注册 2 个小时。点这里登记一下 https://waytoagi.feishu.cn/share/base/form/shrcnYyxqAWdsFq5qBso8mDsOjg?iframeFrom=docx&ccm_open=iframe ,明天给大家发放 50 小时的算力。 阿里云 PAI Artlab:云平台,直达地址为 https://x.sm.cn/5hd9PfM ,登录后右上角领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw 。 onethingai:邀请链接为 https://onethingai.com/invitation?code=dyAK4vY5 。 以云平台揽睿为例,搭建 ComfyUI 的步骤: 1. 进入「应用启动器」页面,选择「comfyui 官方启动器」,点击「部署」按钮,点击「立即创建」,会进入「工作空间」页面。 2. 创建完成后稍等片刻,无需其他任何操作,等待「打开应用」按钮可点击后,点击该按钮就可以打开 comfyui 界面使用啦。 3. 启动/出图/训练进度可进入工作空间详情 日志查看。
2025-02-25
目前各大高校有哪些场景会实用算力
目前各大高校实用算力的场景可能包括以下方面: 1. 科研计算:如在物理学、化学、生物学等学科的研究中,进行复杂的模拟和数据分析。 2. 人工智能研究:包括模型训练、算法优化等。 3. 图形和图像处理:例如在设计、动画制作等专业中的应用。 4. 数据分析和处理:用于处理大规模的数据集,以支持学术研究和决策制定。 需要注意的是,具体的应用场景会因高校的学科设置、研究方向和教学需求而有所不同。
2025-02-19
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
万卡智算中心该如何设计?
设计万卡智算中心可以参考以下思路: 1. 工作流设计: 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集关键信息。 卖点提炼与优化:运用先进的大模型,对信息进行分析,提炼出具有竞争力和独特性的卖点。 买点转化与策略应用:将卖点转化为消费者视角的买点,运用行为心理学和市场营销策略增强吸引力。 视觉化信息呈现:设计直观且有冲击力的卡片展示,确保信息传达有效且有视觉吸引力。 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容最佳适配。 流程结果存储与分析:将处理结果系统化存储到飞书,以供未来策略优化和决策支持。 2. 多智能体模式设置: 全局设置:包括角色设定与回复逻辑、记忆管理以及对话体验等全局性因素。 多个代理之间的编排和协调:设计思路关键在于让节点形成完整的互动链条,而非一次性互动。当用户意图未满足跳转条件时,保持与当前智能体沟通对话。采用循环机制,而非单向流程,设计为闭环结构,确保用户能在不同智能体间自由切换。例如在旅游场景中,设计分别负责景点推荐、路线规划和食宿安排的三个智能体。先写好提示词,做好全局人物设定,然后在扣子上进行编排。
2024-12-14
智算是什么
智算即智慧计算,是在人工智能时代中涉及的一个重要概念。 智慧是在知识的基础上进一步发展的层次,它不仅仅是大量知识的积累,更重要的是对知识的深刻理解和创新性应用。智慧体现在对复杂问题的洞察力、决策的先见之明以及在不确定环境下的应变能力,是知识和经验的综合,是通过长期的学习、思考和实践形成的。 在知识表示方面,智慧象征着元知识,例如关于如何以及何时使用知识的一些概念。知识表示的问题是找到有效的方法,以数据的形式在计算机中表示知识,使其能够自动化使用。这可以看作是一个连续谱,左侧有几种简单的知识表示方式,如算法,但不够灵活;右侧如自然语言等方式,功能强大但不利于自动化推理。 情感计算也是人工智能领域的一部分,情感对人类有生存、沟通、决策、动机和维系等功能。情感计算的目标是使计算机能够识别、感知、推断和理解人类的情感,最终赋予计算机类似于人的情感能力。
2024-09-18
Deepseek为什么这么火热?
DeepSeek 之所以如此火热,原因主要有以下几点: 1. 价格亲民但实力超群,是智慧开源的领航者,在实时联网深度推理方面表现出色,堪称双冠王,以技术普惠重新定义了 AI 边界。 2. 具备“便宜+开源+能联网”的优势,在 Appstore 排行第一,甚至导致算力股大跌。 3. 其使用地址为:https://chat.deepseek.com/(有手机客户端:扫描下面二维码)。 4. 模型下载地址为:https://github.com/deepseekai/DeepSeekLLM?tab=readmeovfile 。 5. 关于 API 文档地址也有相关介绍。 6. 提示词使用方法单独列了一篇 。 7. 存在魔改版本,如:https://huggingface.co/ValueFX9507/TifaDeepsex14bCoTGGUFQ4 、https://huggingface.co/mradermacher/DeepSeekR1DistillQwen7BabliteratedGGUF 。 此外,DeepSeek 还在文学创作方面有所应用,例如“全新 AI 整活第六期”中以其为工具进行小说创作,相关比赛于 2025 年 2 月 9 日开启,2 月 16 日晚 8 点截止并进行评选,期间还有社区共学等活动,详情可关注相关链接。
2025-03-07
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
我想做个专业领域的智能客服,请问您有一些类似案例吗?
以下是为您提供的一些相关案例: 在 Manus 案例中,有让其创建需要上传文件的 dify 工作流,如根据多篇文章写脱口秀段子,并制作简便美观的网页和接入工作流的 api 等复杂操作。 有关于智能客服场景如何帮助企业更好地对内服务客服、对外服务客户的案例。 在通用 AGENT 案例合集中,包括生活娱乐类 AGENT 方面的案例,如根据出差计划做成的具有多种功能的互动式网页,如供应商工厂探索地图;还有整活娱乐方面的案例,如荒谬句子生成器和豆瓣品味分析师。荒谬句子生成器实现了小时候的线下游戏功能,并增加了扩展句子和虚拟专家评论功能;豆瓣品味分析师能根据用户的豆瓣 id 获得评价信息并生成锐评报告。
2025-03-28