Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI学习路径

Answer

以下是为新手提供的 AI 学习路径:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

另外,如果您偏向技术研究方向,学习路径包括:

  1. 数学基础:线性代数、概率论、优化理论等。
  2. 机器学习基础:监督学习、无监督学习、强化学习等。
  3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。
  4. 自然语言处理:语言模型、文本分类、机器翻译等。
  5. 计算机视觉:图像分类、目标检测、语义分割等。
  6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。
  7. 科研实践:论文阅读、模型实现、实验设计等。

如果您偏向应用方向,学习路径包括:

  1. 编程基础:Python、C++等。
  2. 机器学习基础:监督学习、无监督学习等。
  3. 深度学习框架:TensorFlow、PyTorch 等。
  4. 应用领域:自然语言处理、计算机视觉、推荐系统等。
  5. 数据处理:数据采集、清洗、特征工程等。
  6. 模型部署:模型优化、模型服务等。
  7. 行业实践:项目实战、案例分析等。

无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

Others are asking
有免费生成PPT的ai吗
以下是为您推荐的免费生成 PPT 的 AI 工具: 1. Gamma:在各种交流群中被频繁推荐,免费版本能生成质量很高的 PPT,经过不断优化和改进,能满足大多数用户需求。个人使用体验良好,生成效果在内容组织、设计美观度和整体专业感上都表现出色。 2. 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有一键生成 PPT 内容、支持多种文件格式转 PPT、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等功能。其优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。 3. 讯飞智文:免费,引导较好。 此外,还有一些付费的 PPT 生成工具,如百度文库,付费但质量好。同时也为您提供了一些相关的 PPT 生成网站,如 http://Chatppt.com(付费,自动化程度高)、http://Mindshow.fun(Markdown 导入)、http://Gamma.app(Markdown 导入)、http://Tome.app(AI 配图效果好)。
2025-01-08
有没有能做PPT的ai
以下是一些能做 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,国内的爱设计 PPT 也是值得推荐的选择。它背后拥有强大的团队,成功把握住了 AI 与 PPT 结合的市场机遇,已在国内 AI 生成 PPT 产品中确立了市场领先地位。 卓 sir 还分享了他使用 AI 制作 PPT 的经历,用到的 AI 工具包括 GPT4、WPS AI 和 chatPPT。
2025-01-08
如何想写论文,哪个ai app 更适合拿来使用呢
在论文写作方面,以下是一些适合使用的 AI 应用: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,对于组会准备工作,Claude 和 Gamma.app 是不错的选择。Claude 能帮助快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。 在 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。
2025-01-08
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
零基础如何学AI
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有一些个人的学习经历供您参考: 二师兄来自上海,计算机零基础。2024 年 2 月在售后群接触到 AI 绘画,下载安装包和教学视频,迈出学习第一步。3 月啃完相关教程并开始炼丹。4 月与小伙伴探讨 AI 变现途径,5 月因工作变动在无硬件支持下继续学习。 参加「AI 编程共学」活动,包括 10 月 28 日麦橘的 0 基础做小游戏分享、10 月 29 日梦飞的 0 编程基础入门 Cursor 极简使用指南、10 月 30 日银海的 0 基础学做 AI 拍立得、10 月 31 日的 0 基础做小游戏分享等。
2025-01-08
AI前端开发
以下是关于 AI 前端开发的相关内容: 白九龄在 0 基础使用 Cursor 开发微信小程序时,遇到了诸多问题。如添加背景元素营造氛围、实现自适应和滑动效果、处理意图分析页面的信息展示和排版风格、生成海报时的字数显示和行数限制以及位置和视觉呈现的调整等。由于大模型自身的限制,无法很好地理解一些需求,导致开发过程中出错频繁。此外,还存在模型 token 费用和变现困难等问题。 Yeadon 以“Windsurf 学习共创社区”为例,演示了如何借助 AI 能力快速构建现代化 Web 应用。技术选型为 Vue + TypeScript,目标用户为零基础开发学习者,参考项目为 Cursor101。开发流程包括需求分析与代码生成、环境配置自动化、问题诊断与修复、界面优化与细节打磨、功能迭代与完善。在开发过程中,输入需求让 Windsurf 进行代码生成,可能会出现报错,将报错信息返回给 Cascade 进行自动检查和修复。之后对网页进行细节优化,如导航栏和首页。 齐码蓝开发一个可以承载离谱生物档案的网站,每个页面包含生物介绍、图片、头像、文字介绍,并支持打字和语音对话以及展示相关离谱事件。项目初始化与配置方面,推荐的技术栈包括前端的 React.js 或 Vue.js,后端的 Node.js 加上 Express.js,数据库选择 MongoDB,语音处理使用 Google Cloud SpeechtoText 和 TexttoSpeech API。开发环境配置方面,选择 Visual Studio Code 作为 IDE,安装 Node.js 时会一并安装 npm 用于管理项目依赖。项目目录结构可能如下所示。
2025-01-08
ai 学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您的学习路径偏向技术研究方向,您需要: 1. 具备数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,如监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,包括神经网络、卷积网络、递归网络、注意力机制等。 4. 了解自然语言处理,如语言模型、文本分类、机器翻译等。 5. 熟悉计算机视觉,如图像分类、目标检测、语义分割等。 6. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果您的学习路径偏向应用方向,您需要: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 了解应用领域,如自然语言处理、计算机视觉、推荐系统等。 5. 掌握数据处理,包括数据采集、清洗、特征工程等。 6. 学会模型部署,如模型优化、模型服务等。 7. 进行行业实践,包括项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-07
普通人如何学习AI,并找到合适自己发展的路径
普通人学习 AI 并找到适合自己发展的路径,可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果您想偏向技术研究方向,以下是一些学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您想偏向应用方向,以下是一些学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 另外,如果您想将 AI 与宠物结合,可以参考以下例子和学习路径: 1. AI 宠物助手: 基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物。 例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 2. AI 宠物互动玩具: 利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验。 例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 3. AI 宠物图像生成: 使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像。 这可以帮助宠物主人定制个性化的宠物形象。 4. AI 宠物医疗诊断: 利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统。 通过分析宠物的症状图像和病历数据,提供初步诊断建议。 5. AI 宠物行为分析: 基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式。 帮助主人更好地了解宠物的需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可以开发出各种有趣有用的应用。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
ai学习路径与课程
以下是为新手提供的 AI 学习路径与课程: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于通过 AI 开发应用的同学: 必看 OpenAI API 文档()。 谷歌生成式 AI 课程(注:进阶课程请从第 5 节开始阅读,)。
2025-01-06
小白学习 AI 的最优路径是什么
对于小白学习 AI,以下是一些建议的最优路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。对于纯小白,学习资源大多免费开源,可在有空的时候学习,根据自己的兴趣在 waytoAGI 社区发现并学习最新内容。 对于像开发应用这样的实践,以纯小白开发 Unity 程序为例,需要人类导师把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人,同时通过能直接搞定的小项目先学明白背后的原理,在此基础上开发复杂项目。
2025-01-03
我是一名一线教师,想要学习如何搭建智能体。请跟我一起制定合适的进阶路径和推荐资源链接。
以下是为您制定的学习搭建智能体的进阶路径和推荐资源链接: 进阶路径: 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户可获得 2000 万 Tokens。 可通过充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;免费 GLM4Flash 语言模型/ 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 共学营报名赠送资源包。 2. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建。 推荐资源链接: 1. 智谱 BigModel 共学营第二期:把您的微信变成超级 AI 助理 https://bigmodel.cn/ 2. 教师的 AI 减负指南 3. 提示词培训课——Part2 在搭建智能体的过程中,您需要像导演一样,编排具体流程,检查结果,修改流程,反复迭代。提示语的核心是逻辑,要将复杂的任务拆分成科学合理的步骤,并且让前一步的结果都成为后一步的基础。同时,不要害怕犯错,每一次尝试都是向成功迈进的一步。
2024-12-30
在L1级大模型基础上开发L2级大模型的通常路径是怎样的
目前知识库中没有关于在 L1 级大模型基础上开发 L2 级大模型通常路径的相关内容。但一般来说,开发 L2 级大模型可能需要以下步骤:首先,对 L1 级大模型的性能和局限性进行全面评估,明确需要改进和扩展的方向。然后,收集更多的高质量数据,以丰富模型的训练素材。接着,可能需要调整模型的架构,例如增加层数、扩大神经元数量等,以提升模型的表达能力。在训练过程中,优化训练算法和参数,提高训练效率和效果。同时,不断进行测试和验证,根据结果进行调整和优化,以确保 L2 级大模型能够达到预期的性能和功能。
2024-12-28
我想学习COZE平台创建智能体的详细教程。
以下是在 COZE 平台创建智能体的详细教程: 1. 基础智能体创建: 进入 coze 官网(www.coze.cn),注册并登录。 点击页面左上角的⊕。 通过【标准创建】填入 bot 的基本信息。 2. Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料;表格可用于结构化数据的存储和调用;照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息;数据库可管理持久化的结构化数据;长期记忆可保存重要的历史对话信息;文件盒子可管理各类文档资料。 交互优化(底部区域):可设置开场白、用户问题建议、快捷指令、背景图片等。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 3. 图像流相关: 打开 Coze 官网(https://www.coze.cn/home)。 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流效果,可使用毛坯房测试用例(https://tgi1.jia.com/129/589/29589741.jpg)。 开始节点对应配置三项内容,进行提示词优化。 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布。
2025-01-08
怎么学习COZE平台的操作?要全面详细
以下是全面学习 COZE 平台操作的方法: 1. 前置条件:起码已经使用过 Coze,并亲自搭建过一些简单的工作流。 2. 重点学习资源: 官方案例非常值得学习,不要错过优质资源。 观看 90 分钟的视频教程,文档教程为辅。例如“【90 分钟视频教程】全网最详细的 Coze AI 应用教学”中的案例演示,如 Coze 的创意写真馆应用:https://www.coze.cn/template/project/7442139374751629323? 以及 。 3. 操作步骤: 对于不了解 Coze 操作的情况,可以按照以下步骤完成 Agent 最后的测试与封装: 试运行整个工作流,验证整体运行效果,包括响应速度、生成质量。点击「试运行」,把待精读文章输入「开始节点」的{{BOT_USER_INPUT}},观察流程在 1 分钟内是否运行完成,最终输出的“回答内容”是否符合预期。 迭代优化工作流,提升性能。此步骤可自行按照配置思路进行细致优化。 在外层 bot 中封装工作流。 进行外层 bot 调试。 完成以上步骤后,即可发布 bot 。
2025-01-08
如何学习Coze?有哪些参考资料
以下是关于学习 Coze 的一些参考资料和方法: 推荐方法:可以通过 Claude + Coze 来学习。Claude 是目前最强的 AI 大模型,而 Coze 是一款 AI Agent 的衍生产品。其最大价值在于跟进当前 AI Agent 工具的发展情况、发现商业化机会以及做产品 Demo。 公开分享: 共学资料: 地址: Coze 国内版地址:https://www.coze.cn/home Coze 海外版地址:https://www.coze.com/home 在学习 RAG 的过程中,可以先通过 Claude 帮助了解细节概念,然后通过 Coze 搭建 Demo 来实践学习。此外,还创建了一些相关的 Bot,如产品资料问答机器人等。如果对数据库概念有困惑,可参考。
2025-01-08
目前对中学生学习最有帮助的ai工具有哪些
以下是一些对中学生学习有帮助的 AI 工具: 1. 编程语言学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. AI 生成工具:如 ChatGPT、Midjourney 等,体验 AI 的应用场景。 3. AI 教育平台:如百度的“文心智能体平台”、Coze 智能体平台等。 4. 语言学习工具:像 Speak、Quazel、Lingostar 等能够实时交流,并对发音或措辞给予反馈。 5. 学科学习工具:如 Photomath、Mathly 用于指导学生解决数学问题;PeopleAI、Historical Figures 通过模拟与杰出人物的聊天来教授历史。 6. 写作辅助工具:Grammarly、Orchard、Lex 等帮助学生克服写作难题,提升写作水平。 7. 内容创作工具:Tome、Beautiful.ai 协助创建演示文稿。 需要注意的是,在使用这些工具时,要合理利用,不能过度依赖,同时也要关注 AI 技术的发展动态,不断提升自己的学习能力。
2025-01-08
我使用了豆包,也学习了简单的提示词,但大数据反馈的结果并不好,很多数据分析,文档优化效果并不理想。我该怎么办
以下是一些可能有助于您改善大数据反馈结果和提升数据分析、文档优化效果的建议: 1. 像“给 Prompt 打分”的示例中那样,找专业的“Prompt 药剂师”对您的提示词进行详细分析,给出准确的评分和改进建议,以提升提示词的质量。 2. 对于数据分析和文档优化任务,要清晰明确地向模型阐述需求。例如,提供大模型可访问的数据源或上传数据表格,通过清晰的提示词说明需要从哪些维度分析数据,以及期望的分析结果输出格式。然后观察生成结果,不断迭代和优化提示词。 3. 对于“大模型幻觉”问题,目前虽无法完全消除,但可以通过其他第三方信息源和知识来检验生成内容是否准确。 4. 若想提高大模型的对话能力,可在 AGI 中搜索“结构化”获取相关文章。另外,如果您指的上下文 token 长度是大模型的记忆窗口,通常是无法延长的,因为这是设定好的。 5. 在用 ChatGPT 写剧本并希望其学习现有成功剧本时,要精心设计提问,清晰准确地表达您的需求,例如明确指出需要总结的规律以及在后续创作中的应用方式。
2025-01-08
怎样从头开始学习AI
以下是从头开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-01-08