Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

了解AI的基础知识

Answer

以下是关于 AI 基础知识的介绍:

一、新手学习 AI

  1. 了解基本概念

    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。
  2. 开始学习之旅

    • 在「入门:AI 学习路径」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。
  3. 选择感兴趣的模块深入学习

    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
    • 掌握提示词技巧,因其上手容易且实用。
  4. 实践和尝试

    • 理论学习后,通过实践巩固知识,尝试使用各种产品创作作品。
    • 知识库中有很多实践后的作品和文章分享。
  5. 体验 AI 产品

    • 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用中的第一手体验。

二、不会代码者学习 AI

  1. AI 背景知识

    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 数学基础

    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型

    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:了解其基本概念。
  4. 评估和调优

    • 性能评估:学会如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习使用网格搜索等技术优化模型参数。
  5. 神经网络基础

    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

三、中学生学习 AI

  1. 从编程语言入手学习

    • 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台

    • 使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景。
    • 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识

    • 了解 AI 的基本概念、发展历程、主要技术(机器学习、深度学习等)。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目

    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态

    • 关注 AI 领域的权威媒体和学者,了解最新进展。
    • 思考 AI 技术对未来社会的影响,培养思考和判断能力。

总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
怎么开发自己的Ai
开发自己的 AI 可以参考以下步骤: 一、用 Coze 免费打造自己的微信 AI 机器人 1. 确定功能范围 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能回答 AI 相关知识,优先以“自己的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在微信公众号上,作为“微信客服助手”。 2. 准备相关内容 根据 Bot 的目的、核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 整理。 创建自己的【知识库】,用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计“AI 前线”Bot 详细步骤 先展示“AI 前线”Bot 的【最终效果】界面。 二、超越贪吃蛇——技术纯小白开发应用 1. 基础小任务 让 AI 按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 对于特定需求,如学习写 chrome 插件,可要求 AI 选择适合小白上手的技术栈生成简单示范项目,包含典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(windows 机器则是 create.cmd) 2. 明确项目需求 通过和 AI 的对话,逐步明确项目需求。 让 AI 像高级别的懂技术的产品经理一样提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点。梳理出产品需求文档,方便后续开发。
2025-01-02
我要制作一个短视频,有什么免费的AI软件吗
以下是一些免费的可用于制作短视频的 AI 软件: 1. ChatGPT(https://chat.openai.com/)结合剪映(https://www.capcut.cn/):ChatGPT 可生成视频脚本,剪映能根据脚本分析出所需场景、角色、镜头等要素并生成素材和文本框架,实现从文字到画面的快速转化。 2. PixVerse AI(https://pixverse.ai/):在线 AI 视频生成工具,支持将多模态输入转化为视频。 3. Pictory(https://pictory.ai/):AI 视频生成器,用户提供文本描述即可生成相应视频内容,无需视频编辑或设计经验。 4. VEED.IO(https://www.veed.io/):提供 AI 图像和脚本生成器,帮助用户从图像制作视频并规划内容。 5. 艺映 AI(https://www.artink.art/):专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 此外,还有一些相关工具: 1. Morph Studio(https://app.morphstudio.com/):还在内测。 2. Heygen(https://www.heygen.com/):数字人/对口型。 3. Kaiber(https://kaiber.ai/) 4. Moonvalley(https://moonvalley.ai/) 5. Mootion(https://discord.gg/AapmuVJqxx):3d 人物动作转视频。 6. Neverends(https://neverends.life/create):操作傻瓜。 这些工具各有特点,适用于不同的应用场景和需求。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-02
免费生成AIPPT的站点有哪些
以下是一些免费生成 AIPPT 的站点: 1. AiPPT.cn: 技术优势:基于自然语言处理技术的语义分析,可帮助用户快速生成演示文稿。具有基于图像识别技术的 AI 插件,能实现智能化的 PPT 模板生成、字体自动化排版等功能。基于数据分析技术的个性化推荐,能根据用户需求和偏好提供量身定制的演示文稿模板和素材。通过了国家网信办 PPT 生成算法备案,同时获得 A 股上市公司视觉中国战略投资,拥有 5 亿+版权素材库和 10 万+PPT 模板,为用户提供版权无忧、图文并茂的内容创作体验。 商业模式:靠订阅工具业务赚钱,为全岗位职场人提供 10 余款 AIGC 工具,围绕企业内容工作流,满足工作中的 PPT、文案、H5、平面/视频制作、新媒体排版等高质量内容创作需求。 2. AutoAgents.ai:未来式智能是一家由创新工场投资,国内首批大语言模型技术落地和应用场景探索的公司。以自研 MultiAgent 架构为基础构建企业级 Agent“灵搭”平台,为企业提供 AI Copilot、Autopilot、Autonomous Agent 等智能体产品与服务。基于自主研发的企业级 Agent 应用构建平台,致力于解决大语言模型到场景化落地应用“最后一公里”问题。通过打破传统固化业务流,帮助企业构建高度智能化的底层通用业务流,打造人机共创的工作新范式,引领企业业务流程智能化升级,让全球 10 亿知识工作者 10 倍效工作。
2025-01-01
那个AI可以编辑微信订阅号
AI 可以编辑微信订阅号。Coze 平台是一个 AI 智能体创作平台,支持与微信订阅号的对接,使 AI 机器人能够自动回复用户的消息。 目前 Coze 平台还支持与微信服务号、微信客服的对接。不过,之前 Coze 平台不支持直接与个人微信和微信群进行功能对接,但随着 Coze 国内版正式发布 API 接口功能,直接对接个人微信甚至微信群已成为可能。 以下是一些 AI 相关产品的月度订阅榜单: 10 月订阅榜: Framer AI,市场为海外,分类为代码助手,网址为 framer.com,订阅收入 83 万美金,环比变化 0.1227,付费率 0.0124。 Pixelcut,市场为海外,分类为图片编辑,网址为 pixelcut.ai,订阅收入 80 万美金,环比变化 0.1985,付费率 0.0046。 arcads,市场为海外,分类为视频编辑,网址为 arcads.ai,订阅收入 79 万美金,环比变化 0.1188,付费率 0.1115。 CRAYO,市场为海外,分类为视频编辑,网址为 crayo.ai,订阅收入 79 万美金,环比变化 0.0124,付费率 0.0358。 Manychat,市场为海外,分类为客户支持,网址为 manychat.com,订阅收入 75 万美金,付费率 0.0069。 Gptzero me,市场为海外,分类为内容检测,网址为 gptzero.me,订阅收入 67 万美金,环比变化 0.2037,付费率 0.0032。 Landr,市场为海外,分类为音乐生成,网址为 landr.com,订阅收入 66 万美金,环比变化 0.6319,付费率 0.0203。 Faceless.video,市场为海外,分类为社媒工具,网址为 faceless.video,订阅收入 63 万美金,环比变化 0.0076,付费率 0.092。 Chatpdf,市场为海外,分类为文章摘要,网址为 chatpdf.com,订阅收入 58 万美金,环比变化 0.133,付费率 0.0047。 CopyCopter,市场为海外,分类为视频生成,网址为 copycopter.ai,订阅收入 55 万美金,环比变化 3.1975,付费率 0.097。 11 月订阅榜: Submagic,市场为海外,分类为视频编辑,网址为 submagic.co,MRR 为 101 万美金,环比变化 0.4211。 Fotor,市场为出海,分类为图片编辑,网址为 fotor.com,MRR 为 100 万美金,环比变化 0.0572。 Instantly,市场为海外,分类为销售,网址为 instantly.ai,MRR 为 88 万美金,环比变化 0.2151。 bolt,市场为海外,分类为代码助手,网址为 bolt.new,MRR 为 87 万美金,环比变化 1.0104。 TalkPal AI,市场为海外,分类为个人助理,网址为 talkpal.ai,MRR 为 86 万美金,环比变化 0.5643。 Poe,市场为海外,分类为聊天机器人,网址为 poe.com,MRR 为 83 万美金,环比变化 0.1821。 Pixelcut,市场为海外,分类为图片编辑,网址为 pixelcut.ai,MRR 为 81 万美金,环比变化 0.1985。 Framer AI,市场为海外,分类为代码助手,网址为 framer.com,MRR 为 80 万美金,环比变化 0.1227。 Gptzero me,市场为海外,分类为内容检测,网址为 gptzero.me,MRR 为 75 万美金,环比变化 0.2037。 arcads,市场为海外,分类为视频编辑,网址为 arcads.ai,MRR 为 73 万美金,环比变化 0.1188。 Landr,市场为海外,分类为音乐生成,网址为 landr.com,MRR 为 70 万美金,环比变化 0.6319。
2025-01-01
推荐学习Aigc的入门理论书籍
以下是为您推荐的学习 AIGC 的入门理论书籍和相关资料: 1. 《AIGC Weekly19》:其中包括腾讯非常系统的 Stable Diffusion 介绍文章,马丁整理的关于 AIGC 的碎片化思考,多邻国创始人 Luis von Ahn 专访,Meta AI 发布的自监督学习“烹饪书”,以及回顾大语言模型发展历程的内容。 2. 《AIGC Weekly01》:包含对 Stable Diffusion 工作原理的介绍,Emad 写的关于 SD V2 模型的笔记,Hugging Face Inference Endpoints 指南,GPT4 预测相关内容,以及关于 AI 时代工作未来的读物。 3. 【AI 学习笔记】:介绍了 AI 大模型的相关概念,如生成式 AI、相关技术名词(包括监督学习、无监督学习、强化学习、深度学习等)、技术里程碑(如 2017 年谷歌团队发表的提出 Transformer 模型的论文)等。
2025-01-01
跟股票相关的AI工具有哪些?
以下是一些与股票相关的 AI 工具: 1. 东方财富网投资分析工具:利用 AI 技术分析金融市场数据,为投资者提供投资建议和决策支持,例如根据股票的历史走势和市场趋势预测股票的未来走势。 2. 目前市场上还有一些通用的 AI 工具,如 ChatGPT 等,虽然不是专门针对股票,但可以辅助进行相关的信息收集和分析。 需要注意的是,使用这些工具时应结合自身的判断和专业知识,谨慎做出投资决策。
2025-01-01
AI基础知识
以下是关于 AI 基础知识的介绍: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的模块进行深入学习,如图像、音乐、视频等。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。
2024-10-30
怎么用ai学习电子基础基础知识
以下是关于如何用 AI 学习电子基础知识的建议: 1. 从编程语言入手:可以选择 Python 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。 2. 尝试使用相关工具和平台:例如利用 ChatGPT 等 AI 生成工具,体验其应用场景。也可以探索一些专门的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在电子领域的应用案例。 4. 参与实践项目:参加相关的竞赛或活动,尝试利用 AI 技术解决电子方面的实际问题,培养动手能力。 5. 关注前沿动态:关注权威媒体和学者,了解 AI 技术在电子领域的最新进展,思考其对未来的影响。 同时,您可以参考以下资源: 阅读「」部分,熟悉相关术语和基础概念。 学习「」中的课程。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-29
AI的基础知识
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享作品。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-10-18
想要了解AI的基础知识
以下是关于 AI 基础知识的介绍: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。
2024-10-15
AI 基础知识
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:明白人工智能、机器学习、深度学习的定义以及它们之间的关系。 历史发展:简要了解 AI 的发展进程和重要的里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等线性代数的基本概念。 概率论:了解基础的概率论知识,例如条件概率、贝叶斯定理。 算法和模型: 监督学习:知晓常用算法,像线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解强化学习的基本概念。 评估和调优: 性能评估:清楚如何评估模型性能,比如交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣模块深入学习:根据自身兴趣选择特定模块,比如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品创作作品,并在知识库分享。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-10-07
AI的基础知识
以下是关于 AI 基础知识的介绍: 编程语言方面: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续学习 AI 打下基础。 AI 工具和平台: 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 AI 知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 数学基础:熟悉统计学(均值、中位数、方差等)、线性代数(向量、矩阵等)、概率论(条件概率、贝叶斯定理等)的知识。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 实践方面: 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 前沿动态: 关注 AI 领域的权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,学习 AI 基础知识可以从多个方面入手,全面系统地进行学习和实践。
2024-09-08
科学家现在完全了解gpt是怎么工作的吗
目前科学家尚未完全了解 GPT 的工作原理。以下是一些关于 GPT 工作原理的相关知识: Openai 的科学家认为,GPT 产生智能是因为神经网络将知识进行了复杂的压缩,在询问问题时将其中的知识解码(解压缩)。大语言模型的数据压缩能力越强,意味着其 AGI 智能越强。遵循最小描述长度原理和奥卡姆剃刀原则,最佳解释应是对数据进行尽可能短而准确描述的模型,模型描述长度越短,泛化性越好,也就越智能。 GPT 中的知识存在方式包括:LLM 中有两类神经元,单语义神经元只对输入里某个特殊的知识点产生响应,多语义神经元则相反。在模型学习过程中,为了增加模型参数的利用效率,“单语义神经元”会被分配给重要特征,“多语义神经元”会分配给不太重要的特征,而对更加不重要的特征,模型完全不进行编码。此外,存在知识回路,某个任务的 Prompt 输入 Transformer 后,在网络中存在一些完成这个任务的关键路径,信息主要沿着这条路径向上传播,在传播过程中不断进行信息传递或知识加工,最终完成任务,这与人脑的某些信息处理回路相似。 GPT3 的训练是将模型暴露于大量文本的过程,包含 3000 亿个文本标记的数据集用于生成模型的训练示例。训练时,我们只向模型展示特征并要求它预测下一个单词,模型的预测会有错误,计算其预测中的误差并更新模型,以便下次做出更好的预测,重复数百万次。GPT3 实际上一次生成一个 token 的输出。 GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer)。生成式指的是大模型根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。例如,一开始给大模型一些提示词 Prompt,大模型会结合自身“大脑中存储的知识”进行计算推理,算出下一个单词的概率最大并输出,新的输出会和过去的输入一并成为新的输入,用来计算下一个词,直到计算出下一个词是的概率最大,于是结束输出。
2024-12-31
我是一个AI小白,我希望能通过不断了解AI为我的工作和生活提效,请为我量身定制逐步深入的AI学习计划
以下是为您量身定制的逐步深入的 AI 学习计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,进行实践以巩固知识,尝试使用各种产品做出自己的作品。 2. 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、如果希望继续精进 1. 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其之间的关系)、历史发展(简要回顾 AI 的发展历程和重要里程碑)。 2. 掌握数学基础,包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等线性代数基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 3. 学习算法和模型,如监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 4. 学会评估和调优,包括性能评估(了解如何评估模型性能,包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 5. 掌握神经网络基础,包括网络结构(理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN))、激活函数(了解常用的激活函数,如 ReLU、Sigmoid、Tanh)。 七、学习模式和注意事项 1. 您可以参考《雪梅 May 的 AI 学习日记》,如果您是纯 AI 小白,可以先看左边的目录。学习模式可以是输入→模仿→自发创造。 2. 注意学习内容可能会更新,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 3. 学习时间可以灵活安排,不必每天依次进行,有空的时候学习即可。 4. 本学习计划中的学习资源大多是免费开源的。
2024-12-30
我应该从哪了解ai制图
以下是了解 AI 制图的一些途径和方法: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关论文,了解 AI 在 CAD 领域的应用和研究成果。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍,了解其应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关论坛和社区,与专业人士交流学习,关注 AI 和 CAD 相关的博客和新闻网站,了解最新动态和案例。 5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等模型在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解实际项目中的效果。 以下为您介绍一些 AI 绘制示意图的工具和使用步骤: 1. Creately: 简介:在线绘图和协作平台,利用 AI 简化图表创建,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能可自动连接和排列图形,有丰富模板库和预定义形状,实时协作功能适合团队使用。 官网:https://creately.com/ 2. Whimsical: 简介:专注于用户体验和快速绘图,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面易于上手,支持拖放操作,提供多种协作功能。 官网:https://whimsical.com/ 3. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作支持远程团队实时编辑,有丰富图表模板和工具,支持与其他项目管理工具集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如需团队协作,可邀请成员一起编辑,完成后导出并分享图表。 关于判断一张图片是否为 AI 生成的: 现在已有不少网站通过对大量图片数据的抓取和分析来判断画作属性,例如使用 AI 来鉴别 AI 绘图性质的网页:ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中可能存在误判,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2024-12-29
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
如何快速了解用ai工具写作
以下是快速了解用 AI 工具写作的方法: 1. 确定写作主题:明确您的研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各个部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:借助 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并进行最后的格式调整。 同时需要注意,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,确保研究质量和学术诚信。 另外,除了上述通用的写作方法,对于创作 AI 短片,您可以考虑以下几点: 确定故事来源:包括原创(如自身经历、梦境、想象)和改编(如经典 IP、名著、新闻、二创)。 进行剧本写作:虽然编剧有一定门槛,但短片创作篇幅较小、情节和角色相对简单,可从自身或朋友经历改编入手,也可对触动您的短篇故事进行改编。多与他人讨论故事,有助于修改和进步。 以下为一些中文的内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ 它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 是得力的智能写作助手,支持多种文体的一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-19
如何系统性地了解认知到熟练精通AI行业
要系统性地从了解认知到熟练精通 AI 行业,可以从以下几个方面入手: 基础理论: 明确人工智能、机器学习、深度学习的定义以及它们之间的关系。 简要回顾 AI 的发展历程和重要里程碑。 数学基础: 掌握统计学基础,熟悉均值、中位数、方差等统计概念。 了解线性代数中的向量、矩阵等基本概念。 具备基础的概率论知识,例如条件概率、贝叶斯定理。 算法和模型: 对于监督学习,了解常用算法如线性回归、决策树、支持向量机(SVM)。 熟悉无监督学习中的聚类、降维等算法。 了解强化学习的基本概念。 评估和调优: 清楚如何评估模型性能,包括交叉验证、精确度、召回率等。 学习使用网格搜索等技术优化模型参数。 神经网络基础: 理解神经网络的基本结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,还可以通过了解当下 AI 行业的佼佼者 OpenAI 及其掌舵人山姆·奥特曼的为人处事态度和原则,洞悉其宏伟构想,从而掌握 AI 行业的理念趋势。
2024-12-19