Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

一句话向完全不了解AI的人介绍什么是AI,并且让他理解什么是AI

Answer

AI 是一种模仿人类思维,可以理解自然语言并输出自然语言的存在。对于不具备理工科背景的人来说,可以把它当成一个黑箱。它就像某种可以理解人类文字但不是人的魔法精灵或器灵,其生态位是似人而非人的。

AI 包含多种技术和概念,比如:

  1. 生成式 AI 生成的内容称为 AIGC。
  2. 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。
  3. 深度学习是一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。
  4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
  5. LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。

2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。

Content generated by AI large model, please carefully verify (powered by aily)

References

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“AI”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:1.当你想让祂实现愿望时,基于祂的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩祂的自由度——(1)你不仅要清晰的告诉祂需要干什么,还需要清晰的告诉祂边界在哪里。(2)你不仅要清晰的告诉祂目标是什么,还需要清晰的告诉祂实现路径方法是哪一条。(3)你不仅要清晰的告诉祂实现路径,最好还直接给到祂所需的正确的知识。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
Ai基础入门
以下是新手学习 AI 的基础入门指南: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,第二期「AI 实训营」手把手学 AI 【第二期:大咖带你快速上手通义灵码 AI 程序员】,讲师为梦飞,WaytoAGI Agent 核心创作者,词元映射 CEO。课程安排如下: |时间|主题|课程内容| |||| |01/22 20:00<br>|0 基础入门篇:写代码像聊天一样简单<br>可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space|AI 编程的能力与边界<br>通义灵码上手指南<br>一句话 AI 编程小游戏展示| |01/23 20:00<br>|AI 编程实战篇:人人都能“福从天降”|0 基础带练“福从天降”小游戏<br>自然语言生成更多小游戏<br>如何在 Github 部署并生成在线链接| 加入通义灵码钉钉共学群(钉钉群号:78080029971),大咖在线答疑!
2025-02-19
Ai入门
以下是关于 AI 入门的相关内容: Python + AI 入门: 许多朋友在深入学习 AI 时因编程而感到困难,各类教程默认会打命令行也增加了入门难度。 本入门旨在让大家在 20 分钟内掌握 Python 和 AI 的相互调用,完成简单程序、爬虫应用抓取公众号文章、为公众号文章生成概述等任务。 Python 拥有丰富的标准库,若不够用可通过 pip 工具从类似 GitHub 的平台订购新道具,在 AI 领域被广泛使用。 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的服务,可通过代码调用完成更多自动化任务。 《雪梅 May 的 AI 学习日记》: 第一阶段包括迈出第一步,看书听课进社区。 DAY5:研究并开始使用 Kimi,抱着每天问 100 个问题的心态调整思考模式,养成有问题问 AI 的习惯,可参考。 DAY6:应朋友推荐学习吴恩达的生成式人工智能课程,可在 B 站搜索对应关键词获取资源,学习笔记参考,抽空陆续 3 天学完。 DAY7:探索用 AI 解决真实问题,如团队写行业研究报告。 适用于 JavaScript 的 AI 堆栈入门: 尽管当前版本是起点,但会逐步完善堆栈并增加更多选项。路线图包括交互式 CLI 用于 createaistack、事务性数据库用于高级用例、更多向量数据库和部署平台选项、开源模型的轻量级微调步骤等。 对在创建过程中发挥重要作用的开源项目如表示感谢。
2025-02-19
搭建AI智能体
搭建 AI 智能体的步骤和要点如下: 1. 创建智能体:输入人设等信息,并放上相关工作流。配置完成后可以进行测试,但千万不要直接发布。 工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 token 再发布。 2. 明确需求和 AI 能力: 在搭建智能体帮助提炼品牌卖点时,需要先明确 AI 的能力边界,例如 AI 对公司及所在市场不了解的部分,包括公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望在新渠道获得的结果等。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,更适合将智能体作为引导型的灵感提问助手。 3. 学会搭建 AI 智能体: AI 智能体如同员工或智能助手,能根据设定的工作流自动调用不同 AI 工具完成全流程任务,无需人类时刻干预。 例如设计“写作助手”的 AI 智能体,输入文章主题、风格和要求,它能自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,大大提高效率。
2025-02-19
grok3 ai什么时候可用
Grok 3 已于今天向所有 Premium+ 订阅者推出(包括 IOS 和网页版),完整版在网页版,APP 上的 Grok 3 有一定削弱。(还有单独会员叫:SuperGrok)今天所有该类用户都能用上。Grok 3 语音模式在大约一周内推出,Grok 3 API 几周后推出,Grok 2 将在 Grok 3 正式可用后开源,xAI 计划也会开源 Grok 3 。
2025-02-19
AI编程工具
以下是一些常见的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更高效、更少错误地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,具备行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 的强大代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 此外,关于 AI 辅助编程还有以下信息: 1. 简易需求无需软件开发,像翻译、数据提取等简单任务,通过 ChatGPT 或 Claude 等 AI 工具即可解决。AI 功能不断升级,支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。相关影响包括降低编程门槛,显著提升开发效率,变革软件工程领域。 2. 用好 AI 编程工具(如 Cursor)的关键技能包括准确描述需求、具备架构能力、专业编程能力以及调试能力。 希望这些信息对您有所帮助!
2025-02-19
对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么
对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战: 风险: 1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。 2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。 挑战: 1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。 2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
2025-02-19
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
deepseek为什么在古诗词理解上这么弱智?
DeepSeek 在很多方面表现出色,并非像您认为的在古诗词理解上弱智。它具有以下优点: 1. 语气还原:能还原帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初的历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:其输出充满具体而惊人的细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。
2025-02-18
如何理解Deepseek认知启发式的设计理念
DeepSeek 认知启发式的设计理念主要包括以下几个方面: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,通过思考减轻 AI 味,增加可读性。 4. 参照大模型的 temperature 设计了阈值系统,但可能形式大于实质,后续可能根据反馈修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不太稳定)。 此外,DeepSeek 具有以下特点: AI 特性定位:支持多模态理解,包括文本/代码/数学公式混合输入;具备动态上下文,即对话式连续记忆(约 4K tokens 上下文窗口);具有任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 在提示词系统方面: 基础指令框架包括四要素模板、格式控制语法等。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号中>表示关键要求,!表示禁止项。 进阶控制技巧包含思维链引导、知识库调用、多模态输出。思维链引导中有分步标记法和苏格拉底式追问;知识库调用中有领域限定指令和文献引用模式。 HiDeepSeek 是为解决使用 AI 工具时答案思考过程不可见的问题而设计的工具,其核心目标是让 AI 像人类交流时那样展示思考过程,在技术层面通过特别规则实现,例如要求 AI 思考像人类一样自然。它能帮助用户更好地理解和使用 AI,让 AI 成为更好的助手。
2025-02-11
扣子工作流上传图片并让AI理解图片内容
扣子工作流可以实现上传图片并让 AI 理解图片内容。具体步骤如下: 1. 上传输入图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 2. 理解图片信息,提取图片中的文本内容信息:通过封装的图片理解大模型和图片 OCR 等插件来实现。 3. 场景提示词优化/图像风格化处理。 4. 返回文本/图像结果。 在搭建工作流时,主要关注以下几个步骤: 1. 点击工作流后面的“➕”来添加一个工作流。 2. 点击创建工作流。 3. 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰以便区分。 4. 初始化的工作流:左边有各种可用的插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有对应的参数说明,初始化后会生成开始模块和结束模块,且只能以开始模块启动,结束模块终结工作流。 此外,扣子平台具有以下特点和功能: 1. 集成了丰富的插件工具,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型,支持内置插件和自定义插件。 2. 提供简单易用的知识库功能来管理和存储数据,支持多种格式的数据上传,包括文本格式、表格格式,也支持本地文件和在线网页内容及 API JSON 数据的上传。 3. 具有持久化的记忆能力,可记住用户对话的重要参数或内容。 4. 工作流功能灵活,可通过拖拉拽的方式搭建处理逻辑复杂且稳定性要求高的任务流。
2025-02-10
长文本理解能里较强的AI
以下是一些长文本理解能力较强的 AI 模型: 1. 智谱·AI 的 ChatGLM26B32k:这是第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 的基础上进一步强化了对于长文本的理解能力,能够更好地处理最多 32K 长度的上下文。在实际使用中,如果上下文长度基本在 8K 以内,推荐使用 ChatGLM26B;如果需要处理超过 8K 的上下文长度,推荐使用 ChatGLM26B32K。此外,还有 ChatGLM26B32kint4 版本,它是 ChatGLM26B32K 的 int4 版本。 2. 通义千问的 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速。首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息。其开源平台包括 Huggingface(https://huggingface.co/spaces/Qwen/Qwen2.51MDemo)和 Modelscope(https://www.modelscope.cn/studios/Qwen/Qwen2.51MDemo)。
2025-02-09
从行业角度怎么理解AI行业
从行业角度理解 AI 行业可以从以下几个方面来看: 1. 领军人物与公司:以 OpenAI 及其掌舵人山姆·奥特曼为例,了解其为人处事态度和原则,以及宏伟构想,有助于洞悉 AI 行业的理念趋势。 2. 行业渗透率:AI 对各行业的渗透呈现出不同的生态位。如智能驾驶和具身智能行业对 AI 技术需求紧密且伴生性强,处于第一梯队;营销、游戏、影视和智能硬件行业处于第二梯队,通过 AI 技术实现生产降本增效和行业升级;教育和医疗基础行业处于第三梯队,在政策支持下积极拥抱 AI 技术,但对安全可控性有更高要求。行业的数据基础和用户需求是影响 AI 技术渗透和变革力的关键因素。 3. 创投情况:2024 年,AI 仍是最强吸金赛道。国内 AI 行业融资总金额增加,但事件数同比下降,马太效应明显,资本更青睐热点和高成熟度赛道。智能驾驶在各细分赛道中独占鳌头,AI+教育、AI+游戏、AI+医疗等赛道投资总额也有所增长。同时,政府积极推进 AI 原生行业发展,出台政策吸引人才和企业,国家队频繁出手投资体现政策支持。
2025-02-09
我是少儿编程老师,现在我需要知道编程每个语言之间的区别,并绘制出一张思维导图给我详细介绍
很抱歉,目前没有关于编程各语言区别的详细内容来为您绘制思维导图。但一般来说,不同的编程语言在语法、应用场景、性能特点等方面存在差异。例如,Python 语法简洁,常用于数据科学和人工智能;Java 应用广泛,在企业级开发中表现出色;C++ 性能高效,常用于系统编程和游戏开发等。您可以通过在线编程学习网站、相关书籍以及技术论坛获取更详细准确的信息来绘制思维导图。
2025-02-19
请介绍一下如何使用AI进行PPT生成
以下是使用 AI 进行 PPT 生成的方法: 1. 利用闪击: 访问国内网站 https://ppt.isheji.com/?code=ysslhaqllp&as=invite ,无需魔法。 选择模板。 将准备的大纲转换成适配闪击的语法,可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650 。 点击文本转 PPT,并在提示框中选择确定,得到转换后的 PPT。 可在线编辑,但导出有会员限制。 2. 以爱设计为例: 导入大纲到工具生成 PPT,其他工具操作方式大同小异,基本基于 Markdown 语法的内容来完成 PPT 生成。 优化整体结构,按照公司要求自行优化字体、图片等元素,针对下载后的 PPT 可删改内容。 3. 结合 GPT4、WPS AI 和 chatPPT: 先让 GPT4 生成 PPT 大纲。 把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT。 让 chatPPT 添加一些动画。 手动修改细节,如字体、事实性错误等。
2025-02-18
通往AGI之路的介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能(AI)学习的中文知识库和社区平台。 社区由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 品牌 VI 方面,融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。 为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,拥有丰富多样的技术活动、学习资源和大量的社区成员。在没有任何推广的情况下,一年时间已有超过 100 万用户和超千万次的访问量。 社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过众多公司/产品,如阿里云、通义千问、淘宝、智谱、支付宝等。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-02-17
DEEPSEEK发展现状介绍一下
DeepSeek 的发展现状如下: 1. 训练成本方面:远高于传闻的 600 万美元,总计约 13 亿美元。定价低于实际成本,导致高额亏损。MixtureofExpert 方法虽降低计算需求,但大规模内存使用可能增加总成本。 2. 竞争优势方面:以低成本开发顶级 AI 模型的 Mistral AI 被中国 DeepSeek 迅速赶超,DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。 3. 市场表现方面:展示出媲美领先 AI 产品性能的模型,成本仅为一小部分,在全球主要市场的 App Store 登顶。 4. 实际使用体验方面:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 5. 热度方面:微信指数达 10 亿多次,陈财猫将分享提示词及小说创作心得。
2025-02-17
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
详细介绍下langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使基于大型语言模型(LLM)和聊天模型创建应用程序更轻松。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如特定文档问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个开源框架,为简化大模型应用开发而设计。它通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性以适应业务需求变化。作为社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握。同时,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-02-14
我想一键一句话生成一个网站用什么工具
以下是一些可以一键一句话生成网站的工具: 1. Figma to HTML:适用于 Figma 设计稿,不是图片。使用方法为在设计好的界面中,右击 Plugins Figma to HTML,选取设计稿并设置转换目标为 html 文件,点击 Convert 后开始下载,得到 html 文件。 2. Literally Anything:优点是极其方便,可用于获得复杂网页的部分小组件的代码;缺点是功能单一,很难实现精美网页。使用时描述想要生成的网页,点击 Edit Code 显示 html 代码。 3. Stunning:优点是便捷,制作的网页较为精美;缺点是灵活性不高。使用方法为点击 New Website 新建,根据需求选择对应的模版,和 Stunning AI 交流设计需求,一键生成网页并局部微调细节。 4. GPTs Instant Website :生成的网页可直接通过链接访问。 以下是一些制作网站的 AI 工具: 1. Zyro:网址:。特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器;包含 SEO 和营销工具。 2. 10Web:网址:。特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能;集成 AI 驱动 SEO 分析和优化工具。 3. Jimdo Dolphin:网址:。特点:通过询问用户问题定制网站;提供自动生成的内容和图像;包含电子商务功能。 4. Site123:网址:。特点:简单易用,适合初学者;提供多种设计模板和布局;包括内置的 SEO 和分析工具。 此外还有: 1. Wix ADI。特点:基于用户提供的信息自动生成定制化网站;提供多个设计选项和布局;集成 SEO 工具和分析功能。 2. Bookmark:网址:。特点:AIDA 通过询问用户几个简单问题快速生成网站;提供直观的拖放编辑器;包括多种行业模板和自动化营销工具。 3. Firedrop:网址:。特点:Sacha 可根据用户指示创建和修改网站设计;提供实时编辑和预览功能;包含多种现代设计风格和自定义选项。 4. The Grid:网址:。特点:Molly 可自动调整网站的设计和布局;基于内容和用户互动进行优化;支持多种内容类型。
2024-12-30
用一句话解释什么是controlnet
ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型(如 Stable Diffusion)结合,通过引入如涂鸦、边缘图等多种类型的额外条件输入来控制 AI 绘画生成过程,其工作原理是在 Stable Diffusion 模型中添加辅助模块,实现对生成图像的精细控制,还具有训练鲁棒性、兼容性与迁移能力,不仅用于 AI 绘画,还可用于图像编辑等多种计算机视觉任务。使用时需注意相关设置和安装,如确保路径同步、选择合适的预处理器和模型等。
2024-12-23
帮我润色一句话
以下是为您润色后的内容: 问:文章润色工具有哪些? 以下是一些常见的文章润色 AI 工具: 1. Wordvice AI :集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT :由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot :人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite :基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune :AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin :提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。内容由 AI 大模型生成,请仔细甄别。 夙愿:AI 工作流,赋能我的十倍增长 九、AI 写作打磨文章 先拆解流程,再引入 AI 工具,我就不多说了,直接上流程图。 9.1 Claude3.5 设置 登录 Claude3.5,接着使用 Claude 之前,先根据下图,打开 Artifacts 功能。 9.2 AI 润色词句 例如还是润色一段话。Claude 3.5 的输出效果就是这样的:但是呢,这里 Claude 加戏了,帮我加了个开头和结尾。最好的办法就是当做没看见,它是输出了这些,但我不采用就行了,决策权在我手里。 9.3 AI 打磨优化文章 用同样的方法,我们也可以让 AI 来帮我打磨优化文章。注意,润色词语和打磨优化全文使用同一个聊天窗口就可以了,这样一来,到了打磨优化这步就不用重新发送一段你之前的文章过去了。注意提示词没有标准答案!我是列出了这 7 个步骤,但你一定要按你自己的做法来修改提示词。 关键词接龙 步骤解析: 步骤 2: 润色 在分类之后,我们对每个关键词进行润色,使其更加具体和形象。 主体描述:灵动的猴子(Monkey),韩流风格的猴子(kpop monkey),沉思者(thinker),充满活力的千禧一代(Millennials),韩流女孩(kpop girl),冥想的佛像(Buddha) 环境与构图:险峻的悬崖(cliff),古老的寺庙(Temple),末日后的废墟(post apocalyptic) 背景:禅宗艺术(zen art),装饰艺术风格(Art deco),蒸汽波美学(vaporwave),粉红色的月亮(pink moon),国际化电影效果(International version of the film effect),蒸汽朋克(steampunk) 光线:幽灵般的粉红色光线(ethereal pink),柔和的月光(pink moon) 视角:扭曲的幻想视角(Twist fantasy),双重曝光效果(Double Exposure) 构图:悬浮的物体(levitating),乔伊印花(jouy print) 风格:杉本博司的摄影风格(Hiroshi Sugimoto),爱德华·霍珀的绘画风格(Edward Hopper),《V 字仇杀队》的视觉风格(V for Vendetta),蒸汽波艺术(Vaporwave),青瓷绿(Celadon green) 艺术家:杉本博司的视觉语言(Hiroshi Sugimoto),爱德华·霍珀的叙事风格(Edward Hopper)
2024-12-05
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
可以一句话生成视频的免费工具有哪些
以下是一些可以一句话生成视频的免费工具: 1. Pika Labs:被网友评价为目前全球最好用的文本生成视频 AI。功能包括直接发送指令或上传图片生成 3 秒动态视频,目前内测免费。生成服务托管在 discord 中,操作步骤如下: 加入 Pika Labs 的 Discord 频道,在浏览器中打开链接 https://discord.gg/dmtmQVKEgt 点击加入邀请。 在“generate”区生成,左边栏出现狐狸头像意味着操作成功,若未成功点开头像邀请机器人至服务器。接着在 Discord 频道左侧找到“generate”子区,任选一个进入。 输入指令生成,如输入/create,在弹出的 prompt 文本框内输入描述,比如/create prompt:future war,4K ar 16:9,按 Enter 发送;也可本地图片生成,输入/create,在弹出的 prompt 文本框内输入描述,点击“增加”上传本地图片。 喜欢的效果可直接右上角点击下载保存到本地。若对生成的视频不满意,可点击再次生成按钮优化效果。 2. 可灵(免费):支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文。文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持 16:9、9:16、1:1 尺寸。图生视频除不可运镜控制外,其他与文生视频基本相同,默认生成 5s 的视频。网址为 https://klingai.kuaishou.com/ 。 此外,还有以下一些文字生成视频的工具: 1. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频,由 Stability AI 开源。 2. Kaiber:这是一款视频转视频 AI,能够将原视频转换成各种风格的视频。 3. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-29
根据一句话文生视频给出关键词数据的工具
以下是一些根据一句话文生视频给出关键词数据的工具及相关信息: 在 SD 中,图生图功能除文本提词框外还有图片输入口,可通过图片反推提示词,如 CLIP 能反推出完整含义的句子,DeepBooru 能反推出关键词组,但生成的提示词可能存在瑕疵,需手动补充。 Morphstudio 中,文生视频的提示词指令为:/video。 文字生成视频的 AI 产品有:Pika 擅长动画制作且支持视频编辑;SVD 是 Stable Diffusion 的插件;Runway 是老牌收费工具,提供实时涂抹修改视频功能;Kaiber 能将原视频转换成各种风格;Sora 由 OpenAI 开发,可生成长达 1 分钟以上的视频。更多相关网站可查看。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-09-16