直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI基础知识

回答

以下是关于 AI 基础知识的介绍:

一、AI 背景知识

  1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
  2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。

二、数学基础

  1. 统计学基础:熟悉均值、中位数、方差等统计概念。
  2. 线性代数:了解向量、矩阵等线性代数基本概念。
  3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。

三、算法和模型

  1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
  2. 无监督学习:熟悉聚类、降维等算法。
  3. 强化学习:简介强化学习的基本概念。

四、评估和调优

  1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
  2. 模型调优:学习如何使用网格搜索等技术优化模型参数。

五、神经网络基础

  1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
  2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

对于新手学习 AI 的建议:

  1. 了解 AI 基本概念:

    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念。了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:

    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:

    • 根据自己的兴趣选择特定的模块进行深入学习,如图像、音乐、视频等。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:

    • 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。
    • 在知识库分享实践后的作品和文章。
  5. 体验 AI 产品:

    • 与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。

对于中学生学习 AI 的建议:

  1. 从编程语言入手学习:

    • 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台:

    • 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:

    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:

    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:

    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

写给不会代码的你:20分钟上手 Python + AI

[title]写给不会代码的你:20分钟上手Python + AI[heading1][heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

问:新手如何学习 AI?

[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

[title]问:中学生如何开始学习AI,有哪些好用的工具或者平台?我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

其他人在问
google ai studio
生成式 AI Studio 是 Google Cloud 上的一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少。 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 生成式人工智能的工作原理包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种相关工具,如 Vertex AI(端到端机器学习开发平台,帮助构建、部署和管理机器学习模型)、Model Garden(平台,可发现 Google 的基础和第三方开源模型,并提供 MLOps 工具用于自动化机器学习管道)。
2024-10-31
AI创建角色的指令
以下是关于 AI 创建角色的一些信息: 在 c.ai 这个 AI 角色扮演对话平台中,创建角色的功能非常简洁,主要依赖用户编写的 Description(基础信息)和 Definition(复杂背景),并且已经支持上传声音片段实现语言克隆。 在筑梦岛中,创建梦中人(捏崽)需要用户提供各类信息,其中最核心的是完整设定这样的人设背景信息;创建梦屋(拉群)则允许用户添加多个 AI 角色创建一个群聊。 在游戏开发中,如 Arrowmancer 这款 RPG 游戏,具有 AI 创造的角色,以实现几乎无限的新游戏玩法。还有游戏开发公司使用 AI 让玩家创建自己的游戏内角色形象,相比让玩家从零开始上传自己的内容,通过 AI 生成内容更安全,因为可避免创造冒犯性内容,同时让玩家有更强的归属感。 在使用 Nijijourney 5 进行二次元角色设计时,为获得最佳结果,可能需要尝试不同的权重组合并根据产出调整 Prompt。
2024-10-31
AI制作音乐的工具和案例
以下是一些 AI 制作音乐的工具和相关案例: :无需昂贵的录音设备即可进行多轨录音。 :生成歌词、旋律、鼓点等,并且能够像任何专业 DAW 一样进行编辑和混音。 :AI 驱动的音乐制作平台,使用 AI 创作歌词、节拍和人声,然后直接从 Cassette 进行混音和发布。 :人工智能创作情感背景音乐。 :简化的音乐创作工具,帮助您为视频和播客创作音乐。 :为直播的游戏玩家提供自适应 AI 音乐。 :高质量音乐和音效,所有内容都包含版权。 :世界上第一个动态音乐引擎。 (被 Shutterstock 收购):为内容创作者提供的 AI 音乐创作工具。 :您的虚拟音乐工作室。 :即时制作音乐,与世界分享。 :智能乐谱。 :由一群艺术家、研究人员、设计师和程序员组成的团队。 (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予你新的创作和表达方式。 :使用 AI 改变你的歌唱声音。 :为你的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 案例方面,Manglemoose 最近展示了由他们最新开发的音乐生成器制作的视频案例,该工具的名称尚未公布。bGPT 是一种具有下一个字节预测功能的模型,它几乎完美地复制了符号音乐数据的转换过程,在将 ABC 符号转换为 MIDI 格式时实现了每字节 0.0011 位的低错误率。此外,bGPT 在模拟 CPU 行为方面表现出卓越的能力,执行各种操作的准确度超过 99.99%。
2024-10-31
Notion AI 软件
Notion AI 相关信息如下: Notion CEO 表示,Notion AI 的进展较快。早期对 GPT3 作用轻视,看到 GPT4 能力后想法转变,认为其能改变与计算机的交互模式。之后团队全身心投入 AI 项目,需结合已有积木,招聘人才并让内部人员形成共同信念。 Notion 更多从计算、内容或文本角度思考,认为若更多人能创造性使用软件情况会不同。Notion 的诞生源于一篇论文,初衷是创造能让人们灵活调整和定制的软件,后来转变为提供各种 blocks 构建模板让用户上手即用。 除数据库外,Notion 本身有 AI 相关功能,团队很早就与 OpenAI 和 Anthropic 合作集成 AI 能力,Notion AI 里有 Q&A 功能,能基于个人/组织的知识库回答问题,类似之前的 Coze Bot,只是信息源不同。
2024-10-31
AI共学
以下是关于 AI 共学的相关信息: 「AI 编程共学」: 10 月 28 日 20:00 开始,分享人麦橘,分享内容为 0 基础做小游戏分享,包括通往 AGI 之路增量小游戏、转生之我是野菩萨,回放链接:。 10 月 29 日 20:00 开始,分享人梦飞,分享 0 编程基础入门 Cursor 极简使用指南,回放链接:。 10 月 30 日 20:00 开始,分享人银海,分享 0 基础学做 AI 拍立得,包括 Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用,回放链接:。 10 月 31 日 20:00 开始,分享人猪猪🐷撞南墙。 「Agent 共学」之“谁是人类”「WayToAGI x 阿里云」: 大赛简介:HB 是由 WayToAGI 主办,阿里云百炼和通义千问赞助发起的 AI 共学活动,设置连续三轮迭代式初赛和一次决赛,鼓励制作 AI Agent 及赋予 AI Bot 人设,让人感受 Agent 拟人化魅力(必须使用通义千问 API)。 WaytoAGI 介绍: 。 比赛目标:通过 AI Bot 拟人化比赛提升 Prompt 书写能力,加深对 AI Agent 的学习和理解。 活动形式:在活动群里,主持人出题,AI 机器人和人类卧底在微信群中回答问题,一场比赛 6 8 轮,每轮群众选出谁是人类,详细见 。 比赛结果: 。
2024-10-31
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
怎么用ai学习电子基础基础知识
以下是关于如何用 AI 学习电子基础知识的建议: 1. 从编程语言入手:可以选择 Python 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。 2. 尝试使用相关工具和平台:例如利用 ChatGPT 等 AI 生成工具,体验其应用场景。也可以探索一些专门的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在电子领域的应用案例。 4. 参与实践项目:参加相关的竞赛或活动,尝试利用 AI 技术解决电子方面的实际问题,培养动手能力。 5. 关注前沿动态:关注权威媒体和学者,了解 AI 技术在电子领域的最新进展,思考其对未来的影响。 同时,您可以参考以下资源: 阅读「」部分,熟悉相关术语和基础概念。 学习「」中的课程。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-29
AI的基础知识
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享作品。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-10-18
想要了解AI的基础知识
以下是关于 AI 基础知识的介绍: 一、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。
2024-10-15
AI 基础知识
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:明白人工智能、机器学习、深度学习的定义以及它们之间的关系。 历史发展:简要了解 AI 的发展进程和重要的里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等线性代数的基本概念。 概率论:了解基础的概率论知识,例如条件概率、贝叶斯定理。 算法和模型: 监督学习:知晓常用算法,像线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解强化学习的基本概念。 评估和调优: 性能评估:清楚如何评估模型性能,比如交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣模块深入学习:根据自身兴趣选择特定模块,比如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品创作作品,并在知识库分享。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-10-07
AI的基础知识
以下是关于 AI 基础知识的介绍: 编程语言方面: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续学习 AI 打下基础。 AI 工具和平台: 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 AI 知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 数学基础:熟悉统计学(均值、中位数、方差等)、线性代数(向量、矩阵等)、概率论(条件概率、贝叶斯定理等)的知识。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 实践方面: 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 前沿动态: 关注 AI 领域的权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,学习 AI 基础知识可以从多个方面入手,全面系统地进行学习和实践。
2024-09-08
AI基础知识的资料,最好是有ppt或者pdf文件
以下是为您提供的 AI 基础知识资料: 新手学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 入门经典必读: 1. 基础学习:神经网络、反向传播和嵌入 :这是 Nvidia 的四部分系列文章,介绍了 2015 年实践中的深度学习基础,对于刚开始学习 AI 的人来说是一个很好的资源。 翻译: 翻译: 翻译: 翻译: :通过实用的例子和代码,解释了 AI 基础知识的全面、免费的课程。 :对嵌入和令牌的简单介绍,它们是 LLM(和所有语言模型)的构建块。 翻译: 中学生学习 AI 的建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上部分内容由 AI 大模型生成,请仔细甄别。
2024-09-06