Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我在哪里能看到吴恩达的大模型通识课?

Answer

以下是一些可以看到吴恩达大模型通识课的途径:

  1. 中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,地址:https://github.com/datawhalechina/prompt-engineering-for-developers
  2. 目录:吴恩达讲 Prompt,地址:https://github.com/zard1152/deepLearningAI/wiki ;ChatGPT 提示工程中文翻译版(仅用于学习分享)openai 官方《提示词工程课》超详细中文笔记GitHub-Kevin-free/chatgpt-prompt-engineering-for-developers:吴恩达《ChatGPT Prompt Engineering for De
  3. 2023 年 8 月 24 日,吴恩达最新的《微调大语言模型》短课程上线。
Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

面向开发者的LLM入门课程:地址:[https://github.com/datawhalechina/prompt-engineering-for-developers](https://github.com/datawhalechina/prompt-engineering-for-developers)简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。提示工程指南:地址:[https://www.promptingguide.ai/zh](https://www.promptingguide.ai/zh)简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。LangChain🦜️🔗中文网,跟着LangChain一起学LLM/GPT开发:地址:[https://www.langchain.asia](https://www.langchain.asia/)简介:Langchain的中文文档,由是两个在LLM创业者维护,希望帮助到从刚进入AI应用开发的朋友们。LLMs九层妖塔:地址:[https://github.com/km1994/LLMsNineStoryDemonTower](https://github.com/km1994/LLMsNineStoryDemonTower)简介:ChatGLM、Chinese-LLaMA-Alpaca、MiniGPT-4、FastChat、LLaMA、gpt4all等实战与经验。

目录:吴恩达讲Prompt

https://github.com/zard1152/deepLearningAI/wiki[ChatGPT提示工程中文翻译版(仅用于学习分享)](https://fieghf3pzz6.feishu.cn/wiki/MazPw5eo5iW95gkvWAhcSTxdnSc)[openai官方《提示词工程课》超详细中文笔记](https://ec26ubh65w.feishu.cn/docx/PuULdQP3wojyZYxn157cnsDXnqe)[GitHub-Kevin-free/chatgpt-prompt-engineering-for-developers:吴恩达《ChatGPT Prompt Engineering for De](https://github.com/Kevin-free/chatgpt-prompt-engineering-for-developers)[heading2]介绍[content]有两类大语言模型:基础LLM:基础大型语言模型经过训练,可以根据文本预测下一个词。训练数据通常基于大量来自互联网和其他来源的数据,以推断出最有可能出现的下一个词。指令微调LLM:指令调优的大型语言模型是当前大型语言模型研究和实践的主要发展方向。指令调优的大型语言模型经过训练,能够遵循指令。为了让系统更有帮助并遵循指令,通常会进一步使用一种名为人类反馈强化学习(RLHF)的技术来优化。因为指令调优的大型语言模型经过训练,更有助于提供有用的、无害的回答。[heading2]原则与技巧[content]两个提示的关键原则:1)原则1:尽可能保证下达的指令“清晰、没有歧义”2)原则2:给大模型思考的时间,以及足够的时间去完成任务

2023 年历史更新(归档)

吴恩达最新的《[微调大语言模型](https://www.deeplearning.ai/short-courses/finetuning-large-language-models/)》短课程上线了,课程内容包括了:了解何时对LLM应用微调、准备数据以进行微调、根据你自己的数据训练和评估LLM;《[基于大语言模型的AI Agents(第一部分)](https://waytoagi.feishu.cn/record/1sfvukQ7xWHr1qo2grGFYIbrO)》非常深入浅出地介绍了基于大语言模型的AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了Agent的智能化进程。期待接下来的系列分享,让我们进一步探索AI Agents的最新技术边界;在[一图胜千言](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblyh76bHrCi4PXq&view=vewUunvDn1)中添加了上文中提及的一张图片,来自X上@cristobal_dev的分享《[构建AI应用程序的5个基本部分](https://waytoagi.feishu.cn/record/1sfvuWfsOBoS3LMpgvUeYx1yf)》,用一张清晰、具有美感的图片展示了Models、Prompt Templates、Chains、Agent和Multi-Agent之间的关系;《[周伯文:下一代大模型OS,工具和语言缺一不可](https://waytoagi.feishu.cn/record/1sfvuOSP7QYszqbidiJyRtx04)》,周伯文是清华大学讲席教授、衔远科技创始人,也是前京东集团高级副总裁,他在GAIR 2023论坛上发表了自己对未来的一个看法:AI未来将融合语言与工具智能,实现人工智能在复杂场景下的应用;

Others are asking
吴恩达课程
以下是关于吴恩达课程的相关信息: 对于强化学习的入门学习,如果没有相关基础,可先看吴恩达的课程以获得大致理解,此课程估计需要 25 小时左右。 吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教书写 AI 提示词,并教利用 GPT 开发一个 AI 聊天机器人。相关资源包括: 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 吴恩达(Andrew Ng)是在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域有重要贡献,是在线教育平台 Coursera 的联合创始人。曾在斯坦福大学担任副教授,领导过谷歌的大脑项目(Google Brain),担任过百度公司首席科学家并领导百度研究院。以在深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及,还是多个人工智能和机器学习开源项目的倡导者。其教授的机器学习课程是斯坦福大学和 Coursera 上最受欢迎的在线课程之一,对人工智能领域发展影响深远。内容由 AI 大模型生成,请仔细甄别。
2025-02-05
吴恩达大模型教程
以下是一些与吴恩达大模型相关的教程和资源: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 提示工程指南: 地址: 简介:基于对大语言模型的兴趣编写的全新提示工程指南,介绍了相关论文研究等。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:由两位 LLM 创业者维护的 Langchain 中文文档。 LLM 九层妖塔: 地址: 简介:包含 ChatGLM 等实战与经验。 目录:吴恩达讲 Prompt https://github.com/zard1152/deepLearningAI/wiki Coze 复刻:吴恩达开源的 AI 翻译项目 复刻步骤:包括配置反思优化的提示词、结合反思优化建议再次翻译、选择输出方式等。 大语言模型分为基础 LLM 和指令微调 LLM 两类。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会使用人类反馈强化学习(RLHF)技术优化。提示的关键原则包括尽可能保证下达的指令“清晰、没有歧义”,给大模型思考的时间以及足够的时间去完成任务。
2025-01-21
吴恩达系列课程
以下是关于吴恩达系列课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版、《Building Systems with the ChatGPT API》课程中文版、《LangChain for LLM Application Development》课程中文版等。 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由两个在 LLM 创业者维护,希望帮助到刚进入 AI 应用开发的朋友们。 LLM 开源中文大语言模型及数据集集合中的 LLM 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 吴恩达讲 Prompt 相关课程: 谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教您书写 AI 提示词,并且最后会教您利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 吴恩达和 Open AI 合作的提示工程课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 8 月 24 日历史更新(归档): 吴恩达最新的《》短课程上线,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据您自己的数据训练和评估 LLM。 《》非常深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。 在》,用一张清晰、具有美感的图片展示了 Models、Prompt Templates、Chains、Agent 和 MultiAgent 之间的关系。 《》,周伯文是清华大学讲席教授、衔远科技创始人,也是前京东集团高级副总裁,他在 GAIR 2023 论坛上发表了自己对未来的看法:AI 未来将融合语言与工具智能,实现人工智能在复杂场景下的应用。
2025-01-11
吴恩达的视频课程链接
以下是吴恩达相关视频课程的链接: 谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出的免费 Prompt Engineering(提示工程师)课程: 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本: 【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 11 月 9 日推出的新课程《》,一共 31 集,可在 B 站观看学习。
2025-01-07
吴恩达
吴恩达(Andrew Ng)是人工智能领域的知名科学家和教育者。 他在机器学习、统计学和人工智能领域贡献显著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家并领导百度研究院。 以深度学习和大规模机器学习系统的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目的倡导者,如 TensorFlow 和 Caffe。 他致力于普及人工智能教育,在斯坦福大学和 Coursera 教授的机器学习课程广受欢迎,吸引全球数百万学生参与。其教学和研究工作对人工智能领域发展影响深远。 在相关研究中,吴恩达逐渐意识到利用大量训练数据与快速计算能力的重要性,其想法在一些论文中得到支持。他参与的分散式代码研发,以及在相关领域的成果,为行业发展带来积极影响。 在机器学习课程方面,完成吴恩达的 Coursera 机器学习课程可能会激发对神经网络和深度学习的兴趣。
2024-12-13
吴恩达关于使用hugging face 、langchain 创建自己应用的教程
以下是一些与吴恩达关于使用 hugging face 、langchain 创建自己应用的相关教程资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain 🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. AIGC Weekly 32 中的精选文章: 地址: 简介:这个短期课程是吴恩达工作室与 Hugging Face 合作的,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要。
2024-08-19
AI通识课
以下是关于 AI 通识课的相关内容: AI 技术的发展与应用: 流式训练方式提升训练速度和质量,将孔明灯换成泡泡,基于 Transformer 模型进行流匹配,此方式优于扩大模型。 多种 AI 生成工具: 输入简单提示词就能创作音乐的 so no 音频生成工具。 能创建个人 AI 智能体的豆包。 输入文本可生成播客的 Notebook LN。 端侧大模型的特点: 能部署在手机端等设备,参数量小,可利用手机自带芯片或处理器运算,主要通过压缩来解决存储和性能问题,如减少模型参数量和计算复杂度,知识蒸馏模型有教师模型和学生模型。 AI 工程平台: 对模型和应用有要求,像 define 是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。 AI 工程平台 coach 的应用: 新版本有很多模板,如名画照相馆,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用 APP。 AI 相关工具与平台的介绍及应用: 介绍了 coach 平台的新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 模型社区介绍: 提到魔搭社区等几个为大模型提供数据、企业模型和算力服务的平台,有按任务划分的模型库、数据集和在线应用供体验。 AI 建站预告: 为后续 AI 建站做预告,需要在今明两天安装 vs code 等基础软件,以简单步骤帮助文科生和无基础人员完成建站,获得正反馈。 新手如何学习 AI: 了解 AI 基本概念: 阅读「」部分,熟悉术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按自己节奏学习,有机会获得证书。 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据兴趣选择特定模块深入学习,掌握提示词技巧。 实践和尝试: 理论学习后实践巩固知识,尝试使用各种产品做出作品,知识库有实践作品和文章分享。 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。
2025-01-06
你好,你们Way to AGI能否为我提供中小学课程内容设计,尤其是AI通识课理论部分
以下是为您提供的关于中小学 AI 通识课理论部分的相关内容: 目前在“通往 AGI 之路”中,有以下相关课程和活动: 1. 一堂超好玩儿的离谱村 AI 课以及后续开源共创预告: 由一个小团队创建通用课件,然后开源给部分老师群体,在实践中迭代并补充多样的变体用法,最后完全开源。目前共创小团队有作者和詹娜。作者对 AI 了解深,詹娜在创新教育领域视野开阔。若有强烈加入共创的意愿,欢迎留言介绍专长、教育主张及在教育上使用 AI 的状况。 对于公立学校和公益机构的老师,后续会免费提供:支付一定押金可得教学课件和授课说明,教学后写相关文章回馈社区(原创内容>1000 字,公开署名发表)则全额退回押金,否则押金捐赠为活动经费。商业机构若需要,可向 waytoagi 采购课件。 为保护版权,初期只对在 waytoagi 社群并做出贡献的人群提供,是否符合标准由 waytoagi 智囊团判断。 2. 【已结束】AIPO:校园 AI 创投活动 10 月 8 日10 月 20 日: 10 月 9 日 20:00 有理论基础课程,讲师为银海,课程标题为基础通识课。 3. 如果让我推荐一门 AI 课: 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得课程,可以参与 video battle,每期的评委野菩萨老师要求严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理,可了解更多课程信息。
2024-12-30
请输出人工智能通识课的50个知识要点
很抱歉,暂时没有关于人工智能通识课的 50 个知识要点的相关内容。但以下为您提供一些常见的人工智能知识要点作为参考: 1. 人工智能的定义和发展历程 2. 机器学习的基本概念和方法 3. 深度学习的原理和应用 4. 神经网络的结构和工作机制 5. 监督学习、无监督学习和强化学习 6. 数据预处理和特征工程 7. 模型评估指标和方法 8. 常见的机器学习算法,如决策树、随机森林、支持向量机等 9. 自然语言处理的基本任务和技术 10. 计算机视觉的应用和算法 11. 语音识别和合成的原理 12. 智能推荐系统的工作原理 13. 人工智能在医疗、金融、交通等领域的应用 14. 伦理和社会问题,如算法偏见、数据隐私等 15. 人工智能的局限性和挑战 16. 知识表示和推理 17. 遗传算法和进化计算 18. 模糊逻辑和不确定性处理 19. 人工智能与人类智能的比较 20. 智能机器人的发展和应用 21. 自动驾驶技术的原理和挑战 22. 情感计算和情感分析 23. 图像分类和目标检测 24. 文本分类和情感分类 25. 命名实体识别和信息抽取 26. 关系抽取和知识图谱 27. 机器翻译的方法和技术 28. 问答系统的设计和实现 29. 语音情感识别 30. 图像生成和风格迁移 31. 文本生成和摘要提取 32. 强化学习中的策略优化 33. 深度强化学习在游戏中的应用 34. 人工智能的硬件支持,如 GPU 加速 35. 分布式机器学习和云计算 36. 模型压缩和量化 37. 迁移学习和领域自适应 38. 半监督学习和弱监督学习 39. 异常检测和故障诊断 40. 时间序列预测和分析 41. 多模态数据融合 42. 人工智能的安全和防护 43. 可解释性人工智能 44. 对抗生成网络的原理和应用 45. 胶囊网络和注意力机制 46. 图神经网络和社交网络分析 47. 预训练语言模型,如 GPT、ELMO 等 48. 人工智能的开源框架和工具 49. 人工智能的教育和培训 50. 未来人工智能的发展趋势和展望
2024-09-12
视频理解大模型技术
以下是关于视频理解大模型技术的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-06
大语言模型
大语言模型相关知识如下: Encoder:在大型语言模型中,Encoder 是模型的编码器部分,负责对输入的文本序列进行编码,获取其对应的语义表示。具有词嵌入、位置编码、注意力机制、层叠编码、上下文建模等关键作用。其输出是输入序列对应的上下文化语义表示,会被模型的 Decoder 部分利用。 介绍:大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。能解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题,还可利用相对较小的领域数据集进行定制以解决不同领域的特定问题。其三个主要特征是大型(训练数据集规模和参数数量大)、通用性(能解决常见问题)、预训练微调(用大型数据集预训练,用较小数据集微调)。使用大型语言模型有多种好处,视频中还提到了自然语言处理中的提示设计和提示工程,以及三种类型的大型语言模型。 性能对比:对比不同大型语言模型的性能需考虑多个维度,如理解能力、生成质量、知识广度和深度、泛化能力、鲁棒性、偏见和伦理、交互性和适应性、计算效率和资源消耗、易用性和集成性等。可采用标准基准测试、自定义任务、人类评估、A/B 测试、性能指标等方法进行有效的比较。
2025-02-06
推荐可以生成3D模型的ai软件
以下是一些可以生成 3D 模型的 AI 软件: 1. CADtools 12:这是 Adobe Illustrator 的插件,为其添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的云端 3D CAD/CAM 软件,集成了 AI 功能,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。 对于图片生成 3D 建模的工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,适用于游戏领域的模型生成。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域。 5. VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 此外,还有一些从文本生成 3D 的工具: 1. CSM_ai:能将文本、图像或草图转换为 3D 素材,可直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai 2. Move AI 推出的 Move API:从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api 3. ComfyUI 3D Pack:快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI3DPack/tree/main 4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I
2025-02-06
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
模型测评
以下是关于模型测评的相关内容: Llama2 模型评测:为了解其中文问答能力,筛选了具有代表性的中文问题进行提问,测试了 Meta 公开的 Llama27BChat 和 Llama213BChat 两个版本,未做任何微调和训练。测试问题涵盖通用知识、语言理解等八个类别,使用特定 Prompt 进行测试,测试结果见相应文档。发现该模型对于中文问答的对齐效果一般,基于中文数据的训练和微调十分必要。 小七姐:文心一言 4.0、智谱清言、KimiChat 小样本测评:测评机制包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,能力考量涵盖复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,测评轮次包括复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,每轮次均有不同的任务和模型测试次数。 斯坦福发布大模型排行榜 AlpacaEval:相对于人工标注,全自动化的 AlpacaEval 经济成本和时间成本低。从统计角度探讨了区分模型的评估数据,AlpacaEval 支持两种模式的模型评估方式,评测过程分为选择评估集并计算输出、计算 golden 输出、选择自动标注器并计算胜率三步。
2025-02-06
请用思维导图描述AI智能体大语言模型平台汇总图(带图标LOGO)
以下是为您生成的关于 AI 智能体大语言模型平台的汇总思维导图: 1. 基础层 为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层 静态的知识库 动态的三方数据集 3. 模型层 LLm(largelanguagemodel,大语言模型),例如 GPT,一般使用 transformer 算法来实现。 多模态模型,即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层 模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层(应用层) 用户实际看到的地方。 此外,在翻译场景中: 语言翻译技术经历了从传统规则翻译到深度学习翻译的逐步发展,每一次革新都显著提高了翻译的准确性和自然度。 传统机器翻译存在局限性,基于规则和统计模型,常常出现死板和字面化的结果,尤其在遇到多义词、习语或文化差异时,翻译往往不自然,且容易误导。 深度学习翻译技术通过大规模语料库学习,能够更好地理解上下文和语境,提供更加流畅、准确的翻译。 大模型翻译技术引入后,通过海量数据学习,能够精准捕捉语言的深层语义和文化背景,提供更符合语境的翻译,显著提升了翻译的准确性与流畅度。 在学术场景中: 大模型技术能够快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间。 文献预处理时,需将海量文献的格式转换为可供模型解析的文本格式,可借助平台工具完成文件内容的提取。 可将文件内容自动化提取并结合大语言模型进行批量分析或任务处理,适用于文档总结、信息提取等场景。
2025-02-06
我想学习ai提示词,但是我看到最新的deepseek好像不用提示词也可以写出很好的文案,那我还需要学习提示词吗
学习 AI 提示词是有必要的。提示词是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出,能“提示”模型做什么。设计高质量提示词需根据目标任务和模型能力精心设计,良好的提示词可让模型正确理解需求并给出符合预期的结果。 了解大模型的特性以及具备清晰表述自己需求和任务的能力,才能用好这个工具。 不过也有人持反对观点,认为像打字和写作一样,方法论不是关键,不断尝试和大模型交互就是最佳方法。但在与大模型交互时,用 Markdown 格式清晰表达问题有助于模型更好地理解用户意图,其具有结构清晰、格式化强调、适用性广等优点。 像 DeepSeek 这样的推理型大模型,更懂人话,不需要用户提供详细的步骤指令或特定的提示词模板,用自然语言描述真实场景和具体需求即可。还可以通过一些方式让 DeepSeek 的回答更符合需求,如让其“说人话”、激发深度思考、进行文风转换等。 总之,尽管有些模型可能不太依赖提示词,但学习提示词仍有助于您更好地与各类模型进行交互,并更有效地获得满意的结果。
2025-01-28
可开源的AI工具是什么意思,我可以看到她的代码吗
可开源的 AI 工具是指其源代码可以被公开获取和使用的人工智能工具。这意味着您有机会查看和研究其代码的实现方式。 以下为您列举一些常见的可开源的 AI 工具: 1. CodeGeeX:由智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 2. :一个带 Web 界面简单易用的声音克隆工具。可使用任何人类音色,将一段文字合成为使用该音色说话的声音,或者将一个声音使用该音色转换为另一个声音。 3. :一个开源的音频、音乐和语音生成整合工具包。 4. :一键部署私人 GPT/LLM 的聊天机器人。支持语音合成、多模态和可扩展的插件系统,可以联网、画图、爬虫等。 5. :能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 6. :给 AI 看一眼截屏,便能直接生成代码。该项目可借助 GPT4 Vision 的能力,直接给您将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力,生成外观相似的图像。 7. :可在命令行终端,直接调用与展示各种大模型能力。实现了视频和照片编辑、系统配置更改、自动生成并运行 Demo 源码,AI 一对一聊天问答等功能。 需要注意的是,不同的开源 AI 工具在功能和适用场景上可能会有所不同,您可以根据自己的需求选择最适合您的工具。
2025-01-20
李飞飞最近出的agent综述文章哪里可以看到
以下是李飞飞相关文章的获取渠道: 《》 《》
2025-01-17
我想看到国内在coze平台上的一些AI agent的开放源,怎么才能看到
以下是一些国内的 Agent 构建平台及 Coze 平台的相关信息: Agent 构建平台: Coze:是新一代一站式 AI Bot 开发平台,集成丰富插件工具,涵盖从基础文本处理到高级机器学习功能,还有众多符合平民生活化的插件,如新闻资讯、天气预报、出行必备、生活便利等方面的插件。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 要查看 Coze 平台上的 AI agent 开源内容,您可以通过以下途径尝试:在相关的技术社区、开源代码托管平台(如 GitHub 等)上进行搜索,或者关注 Coze 平台的官方网站及开发者论坛获取相关信息。但需注意,开源内容的获取可能受到平台规定和开发者授权的限制。
2025-01-12
我想看到在coze平台上的一些AI agent的开放源,怎么才能看到
在 Coze 平台上,以下是一些 AI Agent 的开源项目: 此外,以下是一些常见的 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-12
我想看到一些AI agent的开放源,怎么才能看到
以下是一些 AI Agent 的开源项目及相关信息: 此外,还有以下开源项目: 智谱开源的新的 GUI Agent: ,如有问题可联系电子邮箱:alolg@163.com
2025-01-12