Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

吴恩达课程

Answer

以下是关于吴恩达课程的相关信息:

  • 对于强化学习的入门学习,如果没有相关基础,可先看吴恩达的课程以获得大致理解,此课程估计需要 25 小时左右。
  • 吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教书写 AI 提示词,并教利用 GPT 开发一个 AI 聊天机器人。相关资源包括:
    • 原版网址:https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
    • B 站版本:【合集·AI Course-哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB
    • 翻译版本:来自 twitter 博主歸藏
    • 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/prompt-engineering-for-developers/
    • 课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。
    • 视频下载地址:https://pan.quark.cn/s/77669b9a89d7
    • OpenAI 开源了教程:https://islinxu.github.io/prompt-engineering-note/Introduction/index.html
    • 纯文字版本:
  • 吴恩达(Andrew Ng)是在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域有重要贡献,是在线教育平台 Coursera 的联合创始人。曾在斯坦福大学担任副教授,领导过谷歌的大脑项目(Google Brain),担任过百度公司首席科学家并领导百度研究院。以在深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及,还是多个人工智能和机器学习开源项目的倡导者。其教授的机器学习课程是斯坦福大学和 Coursera 上最受欢迎的在线课程之一,对人工智能领域发展影响深远。内容由 AI 大模型生成,请仔细甄别。
Content generated by AI large model, please carefully verify (powered by aily)

References

入门指南:强化学习

1.如果和我一样一点基础也没有,并且概率论和线性代数的知识差不多都忘完了,那么可以去看一下相关课程学习一下,如果不关注公式啥的,这一步可以先忽略,大约周末一天时间就可以搞定;2.然后如果对机器学习也一点基础都没有的话,可以先看吴恩达的课程,有个大致的理解,然后去看李宏毅的课程作为补充,如果单纯的想入门学习强化学习,那么只需要看前几节讲完神经网络那里就差不多了,这个视频课程估计要看25小时左右;3.学完之后可以跟着《动手学深度学习https://hrl.boyuai.com/》一起动手学习一下我们上面学到的概念,写写代码,如果只是入门的话看前五章就好了,本篇文章的很多资料也是整理自这本书,大约10小时左右;4.接下来可以看看B站王树森的深度学习的课程,可以先看前几节学习一下强化学习的基础知识点,大约5小时左右;5.到这个阶段估计还是懵的,需要去上手做点项目,那么可以看《动手学强化学习》这本书,已经开源了https://hrl.boyuai.com/,只看到DQN的部分,大约十几小时。

目录:吴恩达讲Prompt

谷歌/百度AI部门负责人吴恩达和OpenAI合作推出了免费的Prompt Engineering(提示工程师)课程。课程主要内容是教你书写AI提示词,并且最后会教你利用GPT开发一个AI聊天机器人。原版网址:https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/B站版本:【合集·AI Course-哔哩哔哩】https://b23.tv/ATc4lX0https://b23.tv/lKSnMbB翻译版本:[来自twitter博主歸藏](https://twitter.com/op7418?s=21&t=F6BXooLyAyfvHbvr7Vw2-g)推荐直接使用Jupyter版本学习,效率更高:https://github.com/datawhalechina/prompt-engineering-for-developers/吴恩达和Open AI合作的提示工程课程一共9集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。视频下载地址:https://pan.quark.cn/s/77669b9a89d7OpenAI开源了教程:https://islinxu.github.io/prompt-engineering-note/Introduction/index.html纯文字版本:

问:吴恩达是谁?

吴恩达(Andrew Ng)是一位在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域做出了重要贡献,并且是在线教育平台Coursera的联合创始人。吴恩达曾在斯坦福大学担任副教授,并领导了谷歌的大脑项目(Google Brain)。此外,他还曾担任百度公司首席科学家,并领导百度研究院。吴恩达以其在深度学习和大规模机器学习系统方面的研究而闻名,他在这些领域的工作推动了人工智能技术的商业应用和普及。他还是多个人工智能和机器学习开源项目的倡导者,包括TensorFlow和Caffe。除了在学术界和工业界的贡献,吴恩达还致力于普及人工智能教育。他教授的机器学习课程是斯坦福大学和Coursera上最受欢迎的在线课程之一,吸引了全球数百万学生的参与。通过他的教学和研究工作,吴恩达对人工智能领域的发展产生了深远的影响。内容由AI大模型生成,请仔细甄别。

Others are asking
吴恩达大模型教程
以下是一些与吴恩达大模型相关的教程和资源: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 提示工程指南: 地址: 简介:基于对大语言模型的兴趣编写的全新提示工程指南,介绍了相关论文研究等。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:由两位 LLM 创业者维护的 Langchain 中文文档。 LLM 九层妖塔: 地址: 简介:包含 ChatGLM 等实战与经验。 目录:吴恩达讲 Prompt https://github.com/zard1152/deepLearningAI/wiki Coze 复刻:吴恩达开源的 AI 翻译项目 复刻步骤:包括配置反思优化的提示词、结合反思优化建议再次翻译、选择输出方式等。 大语言模型分为基础 LLM 和指令微调 LLM 两类。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会使用人类反馈强化学习(RLHF)技术优化。提示的关键原则包括尽可能保证下达的指令“清晰、没有歧义”,给大模型思考的时间以及足够的时间去完成任务。
2025-01-21
吴恩达系列课程
以下是关于吴恩达系列课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版、《Building Systems with the ChatGPT API》课程中文版、《LangChain for LLM Application Development》课程中文版等。 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由两个在 LLM 创业者维护,希望帮助到刚进入 AI 应用开发的朋友们。 LLM 开源中文大语言模型及数据集集合中的 LLM 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 吴恩达讲 Prompt 相关课程: 谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教您书写 AI 提示词,并且最后会教您利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 吴恩达和 Open AI 合作的提示工程课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 8 月 24 日历史更新(归档): 吴恩达最新的《》短课程上线,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据您自己的数据训练和评估 LLM。 《》非常深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。 在》,用一张清晰、具有美感的图片展示了 Models、Prompt Templates、Chains、Agent 和 MultiAgent 之间的关系。 《》,周伯文是清华大学讲席教授、衔远科技创始人,也是前京东集团高级副总裁,他在 GAIR 2023 论坛上发表了自己对未来的看法:AI 未来将融合语言与工具智能,实现人工智能在复杂场景下的应用。
2025-01-11
吴恩达的视频课程链接
以下是吴恩达相关视频课程的链接: 谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出的免费 Prompt Engineering(提示工程师)课程: 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本: 【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 11 月 9 日推出的新课程《》,一共 31 集,可在 B 站观看学习。
2025-01-07
我在哪里能看到吴恩达的大模型通识课?
以下是一些可以看到吴恩达大模型通识课的途径: 1. 中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,地址: 2. 目录:吴恩达讲 Prompt,地址:https://github.com/zard1152/deepLearningAI/wiki ; 3. 2023 年 8 月 24 日,吴恩达最新的《》短课程上线。
2024-12-30
吴恩达
吴恩达(Andrew Ng)是人工智能领域的知名科学家和教育者。 他在机器学习、统计学和人工智能领域贡献显著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家并领导百度研究院。 以深度学习和大规模机器学习系统的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目的倡导者,如 TensorFlow 和 Caffe。 他致力于普及人工智能教育,在斯坦福大学和 Coursera 教授的机器学习课程广受欢迎,吸引全球数百万学生参与。其教学和研究工作对人工智能领域发展影响深远。 在相关研究中,吴恩达逐渐意识到利用大量训练数据与快速计算能力的重要性,其想法在一些论文中得到支持。他参与的分散式代码研发,以及在相关领域的成果,为行业发展带来积极影响。 在机器学习课程方面,完成吴恩达的 Coursera 机器学习课程可能会激发对神经网络和深度学习的兴趣。
2024-12-13
吴恩达关于使用hugging face 、langchain 创建自己应用的教程
以下是一些与吴恩达关于使用 hugging face 、langchain 创建自己应用的相关教程资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain 🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. AIGC Weekly 32 中的精选文章: 地址: 简介:这个短期课程是吴恩达工作室与 Hugging Face 合作的,旨在教授如何快速创建和演示机器学习应用程序。学员将学习构建图像生成、图像字幕和文本摘要应用程序,并与团队成员、测试人员等分享自己的应用程序。课程内容包括使用少量代码创建用户友好的应用程序,使用开源大型语言模型对输入文本进行摘要,并显示摘要。
2024-08-19
有新手入门的系统课程吗
以下是为新手入门 AI 推荐的系统课程: 1. SD 从入门到大佬: 安装完 SD 后,可参考。 强烈推荐跟着 Nenly 同学的【B站 第一套 Stable Diffusion 系统课程】合集走一遍,大概 4 小时左右可掌握基础技能。此外,还有可选的图片版教程。 2. 新手学习 AI 的综合指南: 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。浏览入门文章,了解历史、应用和发展趋势。 开始学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后要实践巩固,可在知识库分享实践作品和文章。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 3. 《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友: 第一阶段:迈出第一步,看书听课进社区。感受是要系统性学习,打好基础。 DAY1 2024.5.22 初步探索:May 认为初期会走弯路,B站 上一些介绍 ChatGPT 原理的分享,消费可看,系统性学习要看高质量内容。 DAY2 2024.5.23 加入 AI 社区:waytoAGI。May 评价这是宝藏社区,可参考,先看新手指引入门。
2025-02-01
我应该怎么入门ai提示词,从哪个开始学习,有课程指路吗
以下是入门 AI 提示词的建议: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 国内大语言模型工具好用,学习可以从提示词开始。提示词的结构可以参考主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),例如“母亲很疲惫看着孩子”。 希望以上内容对您有所帮助。
2025-01-28
AI 3d建模课程
以下是为您提供的 AI 3D 建模课程相关内容: Tripo AI 入门手册: 文生 3D 模型:在「Create」界面底部输入框输入提示词(不支持中文),不会写提示词可点击输入框左侧的</>按钮随机生成并自动填入。填写好后点击右侧「Create」生成 3D 模型,每次生成 4 个基础模型,不满意可点击「Retry」重新生成,对满意的模型点击单个模型下方黄色的「Refine」精修,精修进度在「My Models」中查看,一般 5 分钟左右完成。 图生 3D 模型:点击输入框右侧图标上传图片生成 3D 模型,一次生成一个基础模型,支持「Retry」重生成和「Refine」精修。 12 月 26 日 AI 资讯汇总: Meta:AI 建模技术 PartGen,一种从各种模态(包括文本、图像、3D 模型)进行组合/零件级 3D 生成和重建的新方法,可实现文本转 3D 零部件拆分、图像转 3D 零部件拆分、3D 模型分解和编辑。地址:https://silentchen.github.io/PartGen/ Threejs ai:由网友@vidythatte 开发的根据文字/图片提示生成极简 3D 场景工具,输入提示文字即可迭代构建场景,可用于制作简单的故事交互应用。地址:https://www.threejs.ai/ 工具汇总:AI 生成 3D 模型工具介绍: 3dfy.ai: 概览:是一家将稀疏数据转化为逼真三维世界的公司,领导团队由计算成像领域专家组成。 使用场景:数字 3D 互动体验流行但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。
2025-01-26
有没有专门讲如何使用提示词的课程?
以下是为您提供的关于如何使用提示词的相关课程信息: 1. “从零开始:AI 视频制作小白的成长之路”:提示词的坑较多,有人花钱学习提示词模板和框架课程但仍上手困难。提示词编写可遵循“主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍)”的格式,例如“母亲很疲惫看着孩子”。 2. “提示词培训课——Part1”:学习过程中接触众多原则和规则,包括角色扮演、提供例子、减少幻觉、任务拆解、递归总结、定期总结、意图识别和分类、分段输出、遵循特定语法格式等。通过实际例子演练加深理解并应用到不同场景。由于盗版事件,获取课件需扫微信。 3. “SD 新手:入门图文教程”:根据想画的内容写提示词,多个提示词用英文半角符号隔开。一般概念性、大范围、风格化的关键词写在前,叙述画面内容的其次,描述细节的最后。提示词顺序重要,越靠后权重越低。关键词要有特异性,措辞避免抽象。可使用括号人工修改提示词权重。
2025-01-23
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
ai在线课程
以下是为您提供的关于 AI 在线课程的相关信息: 新手学习 AI 的步骤: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并可能获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 推荐的“野菩萨”AI 课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费获取课程的机会:参与 video battle,获胜者可获得课程。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 “通往 AGI 之路知识库”中的课程: 1. 推荐 B 站 up 主 Nally 的课程,免费且每节 15 分钟。 2. 二十四节气相关教程和关键词已开源,可直接复制使用。 3. 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。16 号晚上中老师将带大家动手操作炼丹。 希望以上信息对您有所帮助,祝您在 AI 学习的道路上不断进步!
2025-01-23