Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

推荐可以生成3D模型的ai软件

Answer

以下是一些可以生成 3D 模型的 AI 软件:

  1. CADtools 12:这是 Adobe Illustrator 的插件,为其添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。
  2. Autodesk Fusion 360:Autodesk 开发的云端 3D CAD/CAM 软件,集成了 AI 功能,能创建复杂几何形状和优化设计。
  3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。
  4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。
  5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。

对于图片生成 3D 建模的工具:

  1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。
  2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。
  3. CSM AI:支持从视频和图像创建 3D 模型,适用于游戏领域的模型生成。
  4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域。
  5. VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。

此外,还有一些从文本生成 3D 的工具:

  1. CSM_ai:能将文本、图像或草图转换为 3D 素材,可直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai
  2. Move AI 推出的 Move API:从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api
  3. ComfyUI 3D Pack:快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI-3D-Pack/tree/main
  4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I
Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有用来画CAD图的AI工具

是的,存在一些AI工具和插件可以辅助或自动生成CAD图,特别是在设计和工程领域。以下是一些可以辅助创建CAD图的AI工具:1.CADtools 12:这是一个Adobe Illustrator(AI)插件,它为AI添加了92个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。2.Autodesk Fusion 360:Fusion 360是Autodesk开发的一款集成了AI功能的云端3D CAD/CAM软件,能够帮助用户创建复杂的几何形状和优化设计。3.nTopology:nTopology是一款基于AI的设计软件,它可以帮助用户创建复杂的CAD模型,包括拓扑优化、几何复杂度和轻量化设计等。4.ParaMatters CogniCAD:CogniCAD是一款基于AI的CAD软件,可以根据用户输入的设计目标和约束条件自动生成3D模型,适用于拓扑优化、结构设计和材料分布等领域。5.生成设计工具:一些主流CAD软件,如Autodesk系列、SolidWorks等,提供了基于AI的生成设计工具,这些工具可以根据用户输入的设计目标和约束条件自动产生多种设计方案。这些工具通常需要一定的CAD知识和技能才能有效使用。对于CAD初学者,建议先学习基本的3D建模技巧,然后尝试使用这些AI工具来提高设计效率。内容由AI大模型生成,请仔细甄别

问:图片生成 3d 建模工具

图片生成3D建模工具是指利用人工智能技术,通过分析图片内容并将其转换成3D模型的软件或服务。以下是一些可用的工具:1.Tripo AI:Tripo AI是VAST发布的在线3D建模平台,它能够利用文本或图像在几秒钟内生成高质量且可立即使用的3D模型。该平台基于一个数十亿参数级别的3D大模型,能够实现快速的2D到3D转换,并提供AI驱动的精准度和细节。2.Meshy:Meshy是一个功能全面的工具,它不仅支持文本生成3D,还支持图片生成3D以及AI材质生成。用户可以通过上传图片并描述需要的材质和风格,来生成高质量的3D模型。3.CSM AI:CSM(Common Sense Machines)支持从视频和图像创建3D模型。它的Real-time Sketch to 3D功能支持通过手绘草图实时设计3D形象,再转换为3D模型。4.Sudo AI:Sudo AI支持通过文本和图像生成3D模型,特别适用于游戏领域的模型生成。用户可以上传图片或输入文本提示词来生成3D模型。5.VoxCraft:由生数科技推出的免费3D模型生成工具,能够将图像或文本快速转换成3D模型,并提供了图像到3D、文本到3D和文本到纹理等多种功能。这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成3D模型,无需专业的3D建模技能。它们可以广泛应用于游戏开发、动画制作、3D打印、视觉艺术等领域。内容由AI大模型生成,请仔细甄别

工具汇总:AI生成3D模型工具介绍

5⃣️🎮@CSM_ai:文本、图像或草图转换为3D素材直接应用于游戏中,无需后期处理视频演示了在ROBLOX游戏中的应用🔗体验地址:https://cube.csm.ai🔗https://x.com/xiaohuggg/status/1763758877999587757?s=205⃣️🏃Move AI推出Move API:从2D视频生成3D运动数据支持多种3D文件格式导出为AR应用、游戏开发等提供高质量3D运动数据🔗https://move.ai/api🔗https://x.com/xiaohuggg/status/1761590288576061573?s=203⃣️🖼️ComfyUI 3D Pack引入3D图像处理:快速将图片转换为3D模型,支持多角度查看。使用3D高斯扩散技术提升模型质量。支持多种格式导出,集成先进3D处理算法。🔗https://github.com/MrForExample/ComfyUI-3D-Pack/tree/main🔗https://x.com/xiaohuggg/status/1755824687811346514?s=202⃣️👨⚕️Medivis的SurgicalAR手术应用:将2D医疗图像转化为3D互动视觉,提高手术精度。支持3D模型的放大、缩小、旋转,精确手术计划。🔗https://t.co/3tUvxB0L4I🔗https://x.com/xiaohuggg/status/1755183564021473404?s=20

Others are asking
有哪些开源或免费的AI模型管理平台,可以配置模型,管理Agent的
以下是一些开源或免费的 AI 模型管理平台及相关模型: 1. 智谱·AI: Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本,最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(、魔搭社区、始智社区、启智社区获取。 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本,上下文 token 数为 2K。可在、魔搭社区、始智社区、启智社区获取。 AgentLM7B:提出了一种 AgentTuning 的方法,开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct,基于上述方法和数据集,利用 Llama2 微调而成,上下文 token 数为 4K。代码链接为。 AgentLM13B:上下文 token 数为 4K,模型权重下载链接为。 AgentLM70B:上下文 token 数为 8K,模型权重下载链接为。 下载模型:智谱 AI 提供的所有开源模型均可以在以下平台进行下载:。 2. 通义千问: 本地部署 Qwen2.51M 模型:使用以下命令启动服务,根据硬件配置进行设置。参数说明: tensorparallelsize:设置为使用的 GPU 数量。7B 模型最多支持 4 个 GPU,14B 模型最多支持 8 个 GPU。 maxmodellen:定义最大输入序列长度。如果遇到内存不足问题,请减少此值。 maxnumbatchedtokens:设置 Chunked Prefill 的块大小。较小的值可以减少激活内存使用,但可能会减慢推理速度。推荐值为 131072,以获得最佳性能。 maxnumseqs:限制并发处理的序列数量。如果遇到问题,请参考相关内容。 与模型交互:可以使用以下方法与部署的模型进行交互:选项 1.使用 Curl;选项 2.使用 Python。对于更高级的使用方式,可以探索如之类的框架。QwenAgent 使模型能够读取 PDF 文件或获得更多功能。
2025-02-06
学习 ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-06
AI自动整理新媒体传播数据
很抱歉,目前知识库中没有关于“AI 自动整理新媒体传播数据”的相关内容。但一般来说,实现 AI 自动整理新媒体传播数据可以通过以下步骤: 1. 数据采集:利用网络爬虫等技术收集新媒体平台上的相关数据,如文章阅读量、点赞数、评论数等。 2. 数据清洗:对采集到的数据进行清理和预处理,去除无效或错误的数据。 3. 特征提取:从清洗后的数据中提取有价值的特征,例如用户行为特征、内容特征等。 4. 选择合适的算法:根据数据特点和需求,选择适合的机器学习或深度学习算法,如分类算法、聚类算法等。 5. 模型训练:使用提取的特征和选择的算法进行模型训练。 6. 模型评估:通过测试数据对训练好的模型进行评估,确保其准确性和可靠性。 7. 部署应用:将训练好的模型部署到实际系统中,实现自动整理新媒体传播数据的功能。 需要注意的是,具体的实现方式会因数据特点、业务需求和技术条件的不同而有所差异。
2025-02-06
目前AI发展到什么阶段了
AI 的发展可以概括为以下几个阶段: 1. 小模型阶段:能力单一,无法泛化和理解,例如早期的人脸识别,只能完成特定任务。 2. GPT 出现阶段:AGI 迎来拐点,机器实现与人类的交流。 3. Sora 出现阶段:打开了 AGI 的大门,能够认知世界并与世界互动,但训练算力可能受到限制。 4. 强人工智能阶段:机器能看懂一些常识并交流,但还缺少对世界力量的感知,如加速度、重力等,目前热炒的具身智能正朝着与物理世界互动的方向发展。 5. 超级人工智能阶段:能够总结出世界的规律,达到如爱因斯坦、牛顿般的水平。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AGI 的五个等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-02-06
如何用AI搭建个人和企业知识库
以下是关于如何用 AI 搭建个人和企业知识库的相关内容: 一、使用飞书搭建 可以参考。读完相关文章,您将收获: 1. AI 时代的知识库的概念、实现原理以及能力边界。 2. 通往 AGI 之路大群中通过对话就能获取知识库中资料的原理。 3. 更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更加强大的智能体。 另外,作者正在规划一个关于 AI 时代您应该具备的编程基础系列,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。 二、本地部署大模型以及搭建个人知识库 1. 若要对知识库进行更灵活的掌控,需要额外的软件 AnythingLLM,其包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离。具体操作包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 完成上述配置后,即可跟大模型进行对话。 三、AI 时代的知识管理体系构建案例 1. 一条书摘:在读书(万维钢的新书《拐点》)时,看到一段有触动但保持批判性思考和怀疑的文本,提到如果足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。 2. 一个笔记:将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。 3. 对笔记的思考和实践:基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会何谓“信息杠杆”可以令你的“思维换挡”,感受如何“让自己发现究竟想要什么”。 4. 生长出的自己的观点和内容:基于上述实践,生成“自己的观点和决策”。 5. 教授和分享:基于“自己的观点和决策”,打造成体系化的内容产品,实现价值。 总结:通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“我自己的智慧”。希望大家都能利用 AI 高效地把自己的知识管理体系搭建起来,运用起来。
2025-02-06
普通人怎样利用AI为副业挣钱
普通人可以通过以下几种方式利用 AI 为副业挣钱: 1. 艺术创作:利用生成式 AI 工具进行内容创作,例如在像 Lensa 这样的平台上,从肖像画开始,拓展到各种媒介的创作,通过内容实现盈利。 2. 成为数字克隆体提供者:将自己的经历和体验提供给数字克隆体,依据被使用的时长和费率获取收益。用户可以通过订阅平台使用多个克隆体,而作为克隆体本体,可基于自身克隆体的费率和被使用时长与平台结算。 3. 利用 AI 进行职业变迁:如果 AI 导致工作机会变化,政府可能通过税收平衡差异,例如全民基本收入(Universal basic income UBI)的方式,为个人提供一定的经济支持。
2025-02-06
据文本自动生成思维导图的软件
以下是一些可以根据文本自动生成思维导图的软件: 1. GPTs 结合 Gapier 这个提供免费 Action 的第三方平台,可以利用 Actions 调取其提供的 API 直接获取内容对应的思维导图。 2. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 3. ProcessOn:国内思维导图+AIGC 的工具,能利用 AI 生成思维导图。 4. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 5. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 6. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成思维导图生成。 7. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助提升生产力。 此外,以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用,支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持多种类型图表创建。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建多种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 需要注意的是,部分内容由 AI 大模型生成,请仔细甄别。
2025-02-06
哪款AI软件,逻辑性最强,知识点最全面
目前市场上有多种 AI 软件在不同领域展现出较强的逻辑性和全面的知识点。以下为您列举部分示例: 医渡云病历分析系统:使用数据分析和自然语言处理技术,能够分析医疗病历,为医生提供辅助诊断建议,市场规模达数十亿美元。 讯飞听见会议总结功能:运用自然语言处理和机器学习技术,可自动总结会议发言内容,市场规模达数亿美元。 英语流利说纠错功能:借助自然语言处理和机器学习,帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习,市场规模达数十亿美元。 腾讯文档分类功能:通过数据分析和机器学习,自动分类办公文件,方便管理,市场规模达数亿美元。 美图美妆 APP:利用图像识别和数据分析,根据用户肤质提供美容护肤建议,市场规模达数亿美元。 喜马拉雅儿童版:采用自然语言处理和机器学习,为儿童生成有趣故事,激发想象力,市场规模达数亿美元。 汽车之家 APP:使用数据分析和机器学习,快速诊断汽车故障,提供维修建议,市场规模达数十亿美元。 顺丰速运 APP:凭借数据分析和机器学习,优化物流配送路径,提高物流效率,市场规模达数十亿美元。
2025-02-06
大学老师可以使用哪些人工智能软件帮助提升教学效率
以下是一些大学老师可以使用来提升教学效率的人工智能软件和相关应用: 1. 个性化学习计划方面:能够分析学生表现,根据知识差距和个人学习风格创建定制的学习路径。 2. 课程开发/学习沉浸方面:包括生成模型生成图像、文本和视频,转化为补充教育材料、作业和练习题。例如可以想象与牛顿本人讨论牛顿第三定律,或者在亚利桑那州立大学的 VR 实验室中学习生物学。 3. 社会互动/沟通方面:与新的 AI 工具(如口语形式的 GPT4o)结合学习,可以为学生提供更好的准备工具,以应对依赖口语/展示沟通的高等教育和职场环境。 4. 备课助手方面:如星火教师助手、知网备课助手。 5. 作文批改评分方面:BigModel 智谱 AI 大模型开放平台可以凭借其卓越的数据处理能力以及广泛的应用潜力,为教师提供帮助。 6. 语言学习方面:像 Speak、Quazel 和 Lingostar 这样的应用可以作为 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 7. 数学学习方面:Photomath 和 Mathly 这样的应用可以指导学生解决数学问题。 8. 历史学习方面:PeopleAI 和 Historical Figures 可以通过模拟与杰出人物的聊天来教授历史。 9. 写作方面:Grammarly、Orchard 和 Lex 等工具可以帮助学生克服写作难题,并提升写作水平。 10. 演示文稿制作方面:Tome 和 Beautiful.ai 可以协助创建演示文稿。
2025-02-06
大模型在软件开发公司(主java+vue)的应用场景有哪些
大模型在以 Java 和 Vue 技术为主的软件开发公司中,具有以下一些应用场景: 1. 代码自动生成:大模型可以根据需求描述生成 Java 或 Vue 的代码片段,提高开发效率。 2. 代码优化建议:分析现有代码,提供优化的建议和策略,提升代码质量。 3. 智能错误检测与修复:快速识别代码中的错误,并提供可能的修复方案。 4. 需求分析与理解:帮助更好地理解和梳理复杂的业务需求,转化为技术实现的思路。 5. 自动化测试用例生成:根据代码和需求生成有效的测试用例,提高测试效率和覆盖度。 6. 技术选型辅助:在面临新的项目或技术难题时,提供相关技术选型的参考和建议。
2025-02-06
AI播客总结软件
以下是一些关于 AI 播客总结软件的信息: 1. 即刻用户拐子狼分享的工作流: 用飞书妙计将音频转换为文字。 找不到合适的封面图时,使用 Midjourney 制作。 Raycast AI 初步检索关键词。 Notion AI 总结全文内容。 将整篇笔记分为四个部分,包括 AI 总结、ShowNotes、节目文字版和笔记。笔记部分对节目提及的关键词做拓展阅读,若解读品牌会放上该品牌在节目所讨论年份的财报。 2. 危柯宇分享的案例: 点开小宇宙播客分享链接。 打开微信通义听悟小程序。 可以直接在通义听悟看概括总结(2 小时播客可在 4 分钟左右分析完),也可一键转录解析导出 txt 文字版,丢到 kimi 自定义分析。 3. 产品推荐: Podwise:是一款面向播客听众的知识管理应用程序,提供人工智能驱动的摘要、思维导图、大纲、值得引用、转录等功能,帮助用户快速提取和理解播客剧集的主要内容。 Decode:提供分析报税表并提供降低税费建议的服务。 Deasie:为 LLM 应用提供数据治理服务,包括检测敏感信息、确定数据的上下文和含义、为文档分配质量分数以及创建认证数据目录。 Relay:工作流程自动化工具,结合了一键式人工智能辅助、人机交互协作和强大的多人游戏体验,支持在协作中加入人工介入的环节。
2025-02-06
介绍一下有没有适合一个5个人软件开发公使用的AI服务器,包含软硬件
目前市面上有多种适合 5 人软件开发公司使用的 AI 服务器,软硬件的选择需要综合考虑多方面因素。 在硬件方面,服务器的处理器性能至关重要,例如英特尔至强系列处理器具有较强的计算能力。内存容量应足够大,以满足数据处理和模型训练的需求,建议至少 32GB 或更高。存储方面,高速的固态硬盘(SSD)可以提供快速的数据读写速度。 在软件方面,常见的操作系统如 Linux(如 Ubuntu、CentOS 等)具有较好的稳定性和兼容性。深度学习框架如 TensorFlow、PyTorch 等是进行 AI 开发的重要工具。同时,还需要配备相关的数据库管理软件、开发工具和监控软件等。 然而,具体的选择还需根据公司的业务需求、预算以及技术团队的熟悉程度来决定。
2025-02-05
视频理解大模型技术
以下是关于视频理解大模型技术的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-06
大语言模型
大语言模型相关知识如下: Encoder:在大型语言模型中,Encoder 是模型的编码器部分,负责对输入的文本序列进行编码,获取其对应的语义表示。具有词嵌入、位置编码、注意力机制、层叠编码、上下文建模等关键作用。其输出是输入序列对应的上下文化语义表示,会被模型的 Decoder 部分利用。 介绍:大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。能解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题,还可利用相对较小的领域数据集进行定制以解决不同领域的特定问题。其三个主要特征是大型(训练数据集规模和参数数量大)、通用性(能解决常见问题)、预训练微调(用大型数据集预训练,用较小数据集微调)。使用大型语言模型有多种好处,视频中还提到了自然语言处理中的提示设计和提示工程,以及三种类型的大型语言模型。 性能对比:对比不同大型语言模型的性能需考虑多个维度,如理解能力、生成质量、知识广度和深度、泛化能力、鲁棒性、偏见和伦理、交互性和适应性、计算效率和资源消耗、易用性和集成性等。可采用标准基准测试、自定义任务、人类评估、A/B 测试、性能指标等方法进行有效的比较。
2025-02-06
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
模型测评
以下是关于模型测评的相关内容: Llama2 模型评测:为了解其中文问答能力,筛选了具有代表性的中文问题进行提问,测试了 Meta 公开的 Llama27BChat 和 Llama213BChat 两个版本,未做任何微调和训练。测试问题涵盖通用知识、语言理解等八个类别,使用特定 Prompt 进行测试,测试结果见相应文档。发现该模型对于中文问答的对齐效果一般,基于中文数据的训练和微调十分必要。 小七姐:文心一言 4.0、智谱清言、KimiChat 小样本测评:测评机制包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,能力考量涵盖复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,测评轮次包括复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,每轮次均有不同的任务和模型测试次数。 斯坦福发布大模型排行榜 AlpacaEval:相对于人工标注,全自动化的 AlpacaEval 经济成本和时间成本低。从统计角度探讨了区分模型的评估数据,AlpacaEval 支持两种模式的模型评估方式,评测过程分为选择评估集并计算输出、计算 golden 输出、选择自动标注器并计算胜率三步。
2025-02-06
请用思维导图描述AI智能体大语言模型平台汇总图(带图标LOGO)
以下是为您生成的关于 AI 智能体大语言模型平台的汇总思维导图: 1. 基础层 为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层 静态的知识库 动态的三方数据集 3. 模型层 LLm(largelanguagemodel,大语言模型),例如 GPT,一般使用 transformer 算法来实现。 多模态模型,即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层 模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层(应用层) 用户实际看到的地方。 此外,在翻译场景中: 语言翻译技术经历了从传统规则翻译到深度学习翻译的逐步发展,每一次革新都显著提高了翻译的准确性和自然度。 传统机器翻译存在局限性,基于规则和统计模型,常常出现死板和字面化的结果,尤其在遇到多义词、习语或文化差异时,翻译往往不自然,且容易误导。 深度学习翻译技术通过大规模语料库学习,能够更好地理解上下文和语境,提供更加流畅、准确的翻译。 大模型翻译技术引入后,通过海量数据学习,能够精准捕捉语言的深层语义和文化背景,提供更符合语境的翻译,显著提升了翻译的准确性与流畅度。 在学术场景中: 大模型技术能够快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间。 文献预处理时,需将海量文献的格式转换为可供模型解析的文本格式,可借助平台工具完成文件内容的提取。 可将文件内容自动化提取并结合大语言模型进行批量分析或任务处理,适用于文档总结、信息提取等场景。
2025-02-06
如何把拍照头像生成一个卡通头像logo
以下是将拍照头像生成卡通头像 logo 的方法: 1. 复杂提示词: 如果觉得简单提示词不够好,可以使用更复杂的提示词,例如:“Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultradetail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderinoiw 1.5s 500v 5”。 效果示例: 不同照片生成:如果对照片风格不满意,可以更换新照片并使用上述提示词重新生成。 其他调整:如果觉得 Disney 风格太过卡通,可以把提示词里的“Disney”换成“Pixar”;如果是女孩,可以把“boy”换成“girl”。每次会生成 4 张图片,对某一张满意可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 2. 操作步骤: 准备工作:如果还没有 Midjourney 账号或不懂基础操作,可以参考之前的教程,如“”。 上传图片:在 Discord 社区的 Midjourney 服务器聊天栏点击“+”,然后点击上传文件,选取图片,在聊天框发送(记得点击回车或发送按钮)。然后图片会上传到服务器并生成唯一链接,点击图片,在浏览器中打开,复制浏览器上方的链接。 输入提示词:在聊天窗口输入“/imainge”找到“/imagine prompt”,把刚才的链接放进去,然后空格,加一些提示词(以英文逗号分隔),最后再加上设置参数。 设置参数: “iw 1.5”设置参考图片的权重,数值越高与参考图片越接近,默认是 0.5,最大是 2,可选择中间值调整。 “s 500”设置风格强度,个性化,艺术性,数字越大,更有创造力和想象力,可设置为 0 1000 间任意整数。 “v 5”指用 Midjourney 的第 5 代版本,这一代最真实,目前 v5 需要订阅付费,不想付费可以使用“v 4”。 “no glasses”指不戴眼镜,如果不喜欢戴眼镜的图片,可以加上这个设置。 完整的提示词示例(替换您的 png 图片地址):“simple avatar,Disney boy,3d rendering,iw 1.5s 500v 5”。如果对生成效果不满意,可以调整“s”和“iw”的值进行多次尝试。 您还可以参考“科技小飞哥”的通俗易懂的教程,原文链接:https://leftpocket.cn/post/ai/cartoon/
2025-02-06
哪些工具可以生成UI设计图
以下工具可以生成 UI 设计图: 1. Midjourney: 直播礼物风格图标:关键词为喂图+(Gift icon),cartoon style,solid color background luminous effect,3d–iw 1–v 5–q 2,卡通风格,纯色背景发光效果,3d。可在素材网站上找喜欢的 icons 风格喂图给机器人,并加上关键词,如(beer icon)啤酒图标、(Headphone icon)耳机图标等。 主题应用 icons:关键词为 icon design,light texture,glow,Dribbble,3D,frostedglass effect,3d,ui,ux,–upbeta–q 2–v 4。 B 端图标:关键词为喂图+A data icon,blue gradient frosted glass,frostedglass building,white transparent technology sensewhite city building scene,data line link,chip,OCrenderer,big data,industrial machinery,high detailight gray background with simple linear details,studio lighting,3d,c4d,pure white background,8k。 音乐软件 UI 设计:关键词为 music app ui design,ux design,white,light,bright,data,modern,smooth,behance,dribbble,–upbeta–q 2–v 4。 生成 UI 界面的指令:如果没想好输入哪些指令,可以先用指令模板「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的「类型」替换成想设计产品的关键词描述(英文),就能生成想要的 UI 设计图。例如出行类关键词为「距离、车费、费用结算、优惠金额、地图」等;餐饮类关键词为「介绍咖啡的特色、口味、咖啡豆产地、价格」等;运动类关键词为「卡路里、步数、距离、某种运动」等描述。 需要注意的是,Midjourney 在 UI 设计方面可能存在不规范和文字混乱的情况,只能作为风格参考。目前网上已有很多 AI 生成的 UI 设计软件开始内测。
2025-02-06
作为一名中学教师,怎么通过Ai工具将教材内容生成教案和ppt
以下是为您提供的通过 AI 工具将教材内容生成教案和 PPT 的方法: 1. 使用 COZE 应用 访问地址:https://www.coze.cn/s/iDsBwYLF/ 首页说明:启动页面有相关介绍。 生成教案:进入设计教案页面,等待执行完成后即可获得教案,教案是其他功能的基础。 趣味课堂:根据课文内容设计课堂问答卡和教学活动,采用寓教于乐的方式激发孩子学习兴趣。 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作等。 教案 PPT:PPT 内容基于生成的教学大纲,可能需要手动进行少许内容修正。若对大纲内容不满意,可重新生成大纲和 PPT。首先复制大纲内容,打开 kimi,选择 PPT;然后复制教案,在对话框粘贴,KIMI 会优化大纲,点击进去后选择喜欢的模版生成。但需注意,PPT 预览与下载可能需要充值。 2. 参考教师使用 AI 小技巧 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT 时,让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。 在特定场景下可直接使用,如学生快速为小组展示配 PPT。 一些 PPT 生成工具(网站): https://wenku.baidu.com :百度文库,付费,质量好。 https://zhiwen.xfyun.cn/ :讯飞智文,免费,引导好。 http://Chatppt.com :付费,自动化程度高。 http://Mindshow.fun :支持 Markdown 导入。 http://Gamma.app :支持 Markdown 导入。 http://Tome.app :AI 配图效果好。 剪映:图文成片,只需提供文案,自动配图配音。
2025-02-06
试过了些代码,还是缺失一些生成图像的工具。
如果您在生成图像方面缺少工具,以下为您提供一些相关信息: 对于风格调音器:生成一个代码后,您可以使用 Parameter 添加到提示中。了解有关参数的更多信息可参考:https://docs.midjourney.com/parameterlist 。复制您的提示和参数,在页面底部找到您的自定义代码,单击 Copy 按钮复制原始提示和新生成的 style<code>参数。您可以与朋友分享您的 Style Tuner 页面并生成新代码,而无需使用任何额外的 GPU 分钟。返回不和谐,使用该 /imagine 命令并将复制的提示和 style<code>参数粘贴到 prompt 字段中,即可生成您的图像。您还可以使用其他 Midjourney 工具(例如 Upscale、Pan、ZoomOut、Remix 或 VaryRegion)进一步增强图像。 对于 Wojak memecoze 复刻版本:先写一个阴阳怪气的 prompt,原作里面就是把用户输入的职业、人物或者概念去尽量解构,用讽刺风趣的 meme 来解读。生成图片时没有用图像流里面的工具,而是用工作流,调用插件来实现。例如用 ByteArtist 插件里面的 ImageToolPro 工具,将 model_type 选 2,就可以根据用户图片风格进行生成。输入一个参考丑图,比如从 glif 官网别人的作品里面选一个 10241024 的老大爷,将其 url 输入给 image_url。 对于 ComfyUI BrushNet:通俗易懂地说,这个过程有点像小时候玩的连点成图游戏。掩码就像是一张有洞的纸覆盖在图片上,电脑程序通过这些洞了解哪些部分需要修复。编码器是电脑的大脑,它把需要修复的图片转换成电脑能理解和处理的信息。噪声潜在空间为了让修复的部分不那么单调,程序会加入一些随机性,这样修复出来的图片看起来更自然。BrushNet 和冻结的 UNet(Frozen UNet,值预训练好的固定不变的)是处理图片的工具,就像画家的画笔和调色板,帮助电脑细致地完成修复工作。程序会尝试去除不需要的噪声,并最终创建出看起来很真实的图片部分。最后,程序会用一种特殊的技巧,将新生成的图片和原始图片融合在一起。
2025-02-06
请给我生成一份ai学习方案
以下是一份基于李宏毅教授的《生成式 AI 导论 2024》的 AI 学习方案: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要涵盖生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,您将掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,并了解生成式 AI 的发展现状和未来趋势。 三、学习内容 1. 什么是生成式 AI 生成式 AI 的定义和分类 生成式 AI 与判别式 AI 的区别 生成式 AI 的应用领域 2. 生成式模型 生成式模型的基本结构和训练方法 生成式模型的评估指标 常见的生成式模型及其优缺点 3. 生成式对话 生成式对话的基本概念和应用场景 生成式对话系统的架构和关键技术 基于生成式模型的对话生成方法 4. 预训练语言模型 预训练语言模型的发展历程和关键技术 预训练语言模型的优缺点 预训练语言模型在生成式 AI 中的应用 5. 生成式 AI 的挑战与展望 生成式 AI 面临的挑战和解决方法 生成式 AI 的未来发展趋势和研究方向 四、学习资源 1. 教材:《生成式 AI 导论 2024》,李宏毅 2. 参考书籍:《深度学习》,伊恩·古德费洛等 3. 在线课程:李宏毅的生成式 AI 课程 4. 开源项目:OpenAI GPT3、字节跳动的云雀等 五、学习方法 1. 认真学习教材和参考书籍,理解基本概念和原理。 2. 观看在线课程,跟随李宏毅教授的讲解深入学习。 3. 参与开源项目,实践所学知识,提高实际操作能力。 4. 结合课程中的案例和实践项目,加深对知识的理解和应用。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录: 1. 第 0 講:課程說明(2024 年 2 月 24 日) 2. 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 3. 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 4. 第 3 講:訓練不了人工智慧?你可以訓練你自己—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 5. 第 4 講:訓練不了人工智慧?你可以訓練你自己—拆解問題與使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲:课程说明 1. 知道: 有能力自己开发 何时需要自己开发 何时可以用现成的人工智能 2. 目标: 了解生成式 AI 背后的原理和更多可能性,作为您成为魔术师的开始 体验用生成式 AI 打造应用 体验训练自己的生成式 AI 模型 负面体验 花时间:大模型是以周为单位来训练 结果不可以控制:养花养小动物 3. 影响模型能力的指标很多,但是常规会看参数的量级来评估,量级指数级增长,FOMO,这就是的立场来源 2019 年 GPT2.0 15b 参数 2024 年 GPT3.5 70b 参数
2025-02-06