Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想学习ai提示词,但是我看到最新的deepseek好像不用提示词也可以写出很好的文案,那我还需要学习提示词吗

Answer

学习 AI 提示词是有必要的。提示词是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出,能“提示”模型做什么。设计高质量提示词需根据目标任务和模型能力精心设计,良好的提示词可让模型正确理解需求并给出符合预期的结果。

了解大模型的特性以及具备清晰表述自己需求和任务的能力,才能用好这个工具。

不过也有人持反对观点,认为像打字和写作一样,方法论不是关键,不断尝试和大模型交互就是最佳方法。但在与大模型交互时,用 Markdown 格式清晰表达问题有助于模型更好地理解用户意图,其具有结构清晰、格式化强调、适用性广等优点。

像 DeepSeek 这样的推理型大模型,更懂人话,不需要用户提供详细的步骤指令或特定的提示词模板,用自然语言描述真实场景和具体需求即可。还可以通过一些方式让 DeepSeek 的回答更符合需求,如让其“说人话”、激发深度思考、进行文风转换等。

总之,尽管有些模型可能不太依赖提示词,但学习提示词仍有助于您更好地与各类模型进行交互,并更有效地获得满意的结果。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:提示词思考总结

提示词(Prompt)是给大语言模型(以下简称模型)的输入文本,用于指定模型应该执行什么样的任务并生成什么样的输出。提示词发挥了“提示”模型应该做什么的作用。设计高质量的提示词需要根据目标任务和模型能力进行精心设计,良好的提示词可以让模型正确理解人类需求并给出符合预期的结果。我们来看一些示例,以便更准确的理解提示词的实际使用:[heading3]直接提问型:[heading3]策略建议型:[heading3]翻译型[heading3]算数型[heading3]概念解释型:[heading2]二、为什么提示词需要学习?[content]首先了解大模型的特性,了解它能做到什么,不擅长做什么,完全无法做什么。随后要求写好brief的能力,也就是清晰表述自己的需求和任务的能力。两者兼具,才能用好这个工具。

如何调教 AI,提示词,就应该和打字一样简单!

“AI时代我们都翻身农奴当老板,拥有数字员工后的我们,了解这些员工的秉性,成为新时代的超级个体。”[heading1]01[heading1]—[heading1]是否需要提示词工程,是否需要学提示词?[content]我是持反对观点的,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。[heading1]02[heading1]—[heading1]和大模型交互需要遵循规则吗?[content]不需要。网上流传最广的提示词方法论,是“你需要给大模型一个角色”。这确实是一个好的策略,因为小学老师,大学老师这样的角色,预设很多背景信息。这是一个非常讨巧的方式。但我并不认为这是一条必须要遵循的原则,甚至所有的规则都不是必须遵守的。你可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了你的目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。[heading1]03[heading1]—[heading1]用Markdown格式清晰表达问题[content]Markdown通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。1.结构清晰:Markdown通过简单的标记语法提供了丰富的格式化选项,如列表、标题、加粗、斜体、链接等。这使得信息呈现出清晰的结构,有助于模型更好地理解问题的重点和结构。2.格式化强调:Markdown允许用户通过格式化来强调问题中的关键部分,如使用加粗来突出重点或使用列表来组织多个问题或信息点。强调有助于模型识别和优先考虑文本的关键部分,从而提高回答的相关性和准确性。3.适用性广:由于Markdown在技术和非技术领域的广泛应用,使用这种格式交流可以确保信息的有效传达。普适性强。[heading1]04

详解:DeepSeek深度推理+联网搜索 目前断档第一

先了解下优势和特点[heading3]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。[heading3]使用DeepSeek的正确方法[content]可以扔掉提示词模板:用自然语言描述,直接描述真实场景和具体需求,提示词模板的目的是清晰表达,如果使用也完全没问题。。让DeepSeek“说人话”:在提问时加上“说人话”“小学生能听懂”“菜市场大妈能听懂的话”等,可以让DeepSeek的回答更加通俗易懂。激发深度思考:让DeepSeek进行批判性思考、反面思考和复盘,以恢复其深度思考能力。文风转换:通过指定模仿的作家和文体,让DeepSeek生成符合特定风格的文本。

Others are asking
来点ai写演讲稿的提示词
以下是一些关于 AI 写演讲稿的提示词示例: 1. 用自然语言详细描述演讲的主题、内容和想要传达的核心观点。 2. 明确演讲的语气,如激昂、沉稳、幽默等。 3. 指出演讲的风格,例如简洁明了、富有文采、情感真挚。 4. 描述用词特点,比如专业术语较多、通俗易懂、生动形象。 5. 强调句式的运用,像是排比句增强气势、设问句引发思考。 6. 结合具体的场景和受众,例如针对大学新生代表的演讲,要体现出鼓励和引导。 7. 参考知名演讲的特点,如乔布斯演讲的创新和激情。 8. 考虑演讲的结构,如开头引人入胜、中间逻辑清晰、结尾有力总结。
2025-04-08
给我一些文学院硕士论文学术写作的ai提示词
以下是一些文学院硕士论文学术写作的 AI 提示词: 1. 论文内容总结: 请对这篇论文进行全面总结,提取核心观点和关键信息。 概括这篇论文的主要内容和研究成果。 2. 论文内容翻译: 请将这篇论文从。 准确翻译这篇论文中的专业术语和复杂句子。 3. 论文内容扩写润色: 将这篇论文的语言表达进行优化,使其更流畅、生动。 把这篇论文的学术语言转化为通俗易懂、适合大众阅读的表达方式。 按照小红书的风格,对这篇论文的结论部分进行润色,使其更具吸引力。 此外,在写作论文时,还可以参考以下提示词: 1. 指令+输入:根据以下关于我的背景信息,写一篇论文。例如:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 2. 基础材料改写: 以权威教育性语气改写这份基础材料。 运用专业法律术语和结构化内容组织方式改写基础材料。 按照规定概述内容解读结语结构改写基础材料,并结合实际案例和潜在挑战。 在改写中融入餐饮行业的商业术语。 为基础材料生成一个开门见山、切中要害,用疑问句引起目标群体悬念的标题。
2025-04-08
有哪些解决问题的提示词
以下是一些关于解决问题的提示词相关内容: 在使用 Claude 时,需遵循“Human:”/“Assistant:”的标准格式。对于 API 里的提示词,固定开头为“n\nHuman:”,固定结尾是“\n\nAssistant:”。 提示词要清晰明确,Claude 对清晰明确的提示词反馈最好。如有疑问,可向朋友展示提示词,询问其能否遵循指令做到要求的事。例如“Human:写一首关于机器人的俳句”“Human:写一首关于机器人的俳句。直接输出俳句不要跟我说话”。 可以使用结构化的提示词模板,如长文档示例中的“Human:<doc>{{文档}]</doc> 请用一个五年级学生能理解的语言来总结这篇文档的主要内容。”同时,对于长文档,建议把要问的问题放在提示词的最后面。 让 Claude 更好地接龙时,可以给它开个头儿。 角色扮演(又称角色性提示词)方面,Claude 有时需要了解它应该扮演的角色。
2025-04-08
来点ai写论文的提示词
以下是一些关于用 AI 写论文的提示词示例: 1. 请根据我提供的关于的研究资料,创作一篇学术论文。论文要有清晰的引言,阐述研究背景和意义;主体部分详细分析相关理论和实验结果;结论部分总结研究成果并提出未来研究方向。语言要严谨、专业。 2. 以,撰写一篇论文。文章应包含对现有研究的综述,提出创新性的观点和方法,并用数据和案例进行论证。格式要符合学术规范。 3. 基于对的论文。要求论文结构合理,逻辑严密,引用恰当的参考文献,语言表达准确流畅。 另外,在使用提示词时,需注意清晰明确地表达需求,包括论文的主题、结构、语言风格、重点内容等方面,以便 AI 生成更符合要求的论文。
2025-04-08
我是一名AI古诗词视频创作者,我想教大家如果用AI软件将古诗词的内容用视频形式表现出来,请帮我写一个教学文档,要求内容丰富,从简单到复杂,从入门到深层思考和学习,包括提示词怎么写,提示词模板,提示词举例等
以下是一份关于如何用 AI 软件将古诗词内容以视频形式表现出来的教学文档: 一、简单入门 如果是简单的图,找原图直接写提示词即可。 二、复杂图片处理 1. 图片分模块 对于复杂部分的图,把长图分多个模块。例如,将一张图分成 4 个模块。 2. 抠出背景图 智能抠图。用工具把要动的内容去除掉,用 AI 生成图片部分。如果有水印,可以把图片向下拓展一部分,然后截掉。 3. 绿幕处理前景图 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 前景图动态生成视频 用 AI 视频生成工具写入提示词让图片动起来。有很多工具可供选择,如即梦、海螺、混元等。不停尝试抽卡即可。 5. 生成视频去掉背景 用剪映把抽卡合格的视频放在去掉内容的背景图片上,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。 三、提示词相关 1. 文案生成 工具:DeepSeek 操作:打开 DeepSeek 网站(https://chat.deepseek.com/ ),输入提示词。例如:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’”可以根据自己的内容自行调整文案和字数要求。点击生成,等待 DeepSeek 输出 3 条文案。从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作:打开即梦 AI 网站(https://jimeng.jianying.com/aitool/image/generate ),输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词。调整生成参数(如风格、细节等),点击生成。预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。下载最终的人物形象图。 四、其他注意事项 1. 指定视觉细节 包括颜色、照明、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. 提及所需长度和格式 如果您对特定的长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. 概述音频偏好 如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. 考虑道德和版权准则 确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题的内容。 请根据您的具体需求和所使用的视频 AI 工具的能力调整模板和示例。记住,输出的质量在很大程度上取决于您通过提示传达愿景的效果。
2025-04-08
提示词优化工具
以下是关于提示词优化工具的相关信息: /shorten 命令: 分析提示:最短的提示,Option 5:tower of donuts, sprinkles 产生了最接近原始目标的图像。 分析结果:许多填充词,如“异想天开”“令人着迷”和“杰作”可以省略。了解“塔”和“魔法”被认为是重要的标记有助于解释为什么一些图像是用童话城堡元素生成的。了解这一点提供了一条线索:如果目标是制作一堆美味的甜甜圈,则应该从提示中删除“神奇”。 特点:该/shorten 命令是一个工具,可帮助您探索 Midjourney Bot 如何解释标记并尝试单词,但它可能不适用于所有主题和提示风格。 星流一站式 AI 设计工具: 下方 prompt 输入框: 可以输入提示词、使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持中英文输入。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发)。 如何写好提示词: 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 辅助功能: 翻译功能:一键将提示词翻译成英文。 删除所有提示词:清空提示词框。 会员加速:加速图像生图速度,提升效率。 提示词优化:启用提示词优化后,帮您扩展提示词,更生动地描述画面内容。 预设词组:小白用户可以点击提示词上方官方预设词组,进行生图。
2025-04-08
如何做 deepseek 微调
要进行 DeepSeek 微调,以下是一些相关的知识和步骤: 1. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 2. 本地部署介绍:如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 3. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 5. 对于微调的全过程,建议阅读 Unsloth 笔记本和 HuggingFace 的《如何微调开放式 LLMs》,也可以使用《如何在一小时内阅读论文》作为指南。 6. 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-04-08
deepseek辅助写论文
以下是关于 DeepSeek 辅助写论文的相关信息: DeepSeek 在写文方面全面领先,但长文可能会太发散,文风用力过猛,导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 有用户使用 DeepSeek 辅助写论文。
2025-04-08
Deepseek论文指令
以下是关于 Deepseek 论文指令的相关内容: 一、DeepSeek 提示词方法论 (一)进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 (二)高级调试策略 1. 模糊指令优化 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 二、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植 效果示例:“用鲁迅杂文风格写职场 PUA 现象” 指令结构:文体杂交 效果示例:“将产品说明书改写成《史记》列传格式” 指令结构:学术口语化 效果示例:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 2. 领域穿透技术 行业黑话破解:“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 三、场景化实战策略 1. 创意内容生成 2. 技术方案论证 四、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 2. 输出质量控制 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 五、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题” 此外,还有关于 DeepSeek 使用方法的一些补充,如输入控制流程化、与 AI 沟通的新思维等,并列举了为中年人撰写包含特定角色的科幻纯爱小说的示例。方法要根据实际场景需求灵活变化。
2025-04-07
deepseek辅助写论文
以下是关于 DeepSeek 辅助写论文的相关信息: DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 有人用 DeepSeek 辅助写论文。
2025-04-01
目前deepseek的进展
目前 DeepSeek 的进展如下: 持续 5 天的“开源周”已进行到第 3 天。周一开源了专为英伟达 Hopper GPU 打造的高效 MLA 解码内核 FlashMLA,已正式投产使用。周二开源了专为混合专家系统(MoE)和专家并行(EP)设计的通信库 DeepEP。周三开源了支持稠密和 MoE 模型的 FP8 GEMM(通用矩阵乘法)计算库 DeepGEMM,可为 V3/R1 的训练和推理提供强大支持。总的来说,英伟达和 DeepSeek 开源的内容都是通过对英伟达 GPU 和集群的优化,来推动 AI 模型的高效计算和部署。 华尔街分析师对 DeepSeek 的反应:展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑。高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 DeepSeek 的实际使用体验:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化,表现不错;编程能力略逊于 GPT,据用户反馈。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。
2025-04-01
deepseek论文指令
以下是关于 DeepSeek 论文指令的相关内容: 一、DeepSeekR1 提示词系统完全指南 进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 高级调试策略 1. 模糊指令优化 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 二、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植 效果示例:“用鲁迅杂文风格写职场 PUA 现象” 指令结构:文体杂交 效果示例:“将产品说明书改写成《史记》列传格式” 指令结构:学术口语化 效果示例:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 2. 领域穿透技术 行业黑话破解:“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 三、场景化实战策略 1. 创意内容生成 2. 技术方案论证 四、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 2. 输出质量控制 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 五、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题” 此外,还有关于 DeepSeek 使用方法的一些补充,如输入控制流程化、与 AI 沟通的新思维等,并给出了为中年人撰写包含特定角色的科幻纯爱小说的示例。方法应根据实际场景需求灵活变化。
2025-04-01
AI课程
以下是为您提供的关于 AI 课程的相关信息: 麻省理工学院(MIT)为 8 18 岁孩子推出了免费的 AI 课程 Day of AI,该课程席卷全球,来自 110 多个国家的 50 万名学生都在使用。但此课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。同时,MIT 作为世界级学府肩负社会责任,用技术实现教育平等。国内有机构将其免费课程下载后开卖录播课收费。 对于新手学习 AI,首先要了解 AI 基本概念,建议阅读“从这里启程”部分熟悉术语和基础概念,浏览入门文章。然后开始学习之旅,在“入门:AI 学习路径”中可找到为初学者设计的课程,推荐李宏毅老师的课程,还可通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。学习后要实践,在知识库有实践作品和文章分享。同时,体验如 ChatGPT 等 AI 产品。 如果让我推荐一门 AI 课,【野菩萨的 AIGC 资深课】由工信部下属单位人民邮电出版社开设,是市面上值得推荐的课程之一,技术更新快,涵盖 AI 绘画、视听语言和 ChatGPT 等知识,无论初学者还是进阶者都适用。
2025-04-08
ai制作网站免费的
以下是一些关于免费的 AI 制作网站的信息: 1. 选择合适的 AI 网站制作工具时,需要考虑以下因素: 目标和需求:明确网站的目标(如个人博客、商业网站、在线商店)和功能需求。 预算:部分工具提供免费计划或试用版,但高级功能可能需付费订阅。 易用性:选择符合自身技术水平,能轻松使用和管理的工具。 自定义选项:检查工具是否提供足够的自定义选项,满足设计和功能需求。 支持和资源:查看是否有充足的客户支持和学习资源(如教程、社区论坛)以解决问题。 2. 麻省理工(MIT)为 8 18 岁孩子推出了免费的 AI 课程 Day of AI,该课程包含在 MIT 的 RAISE 项目中。其课程资源面向家长、老师群体,大孩子可自学,小孩子可能需要家长辅助。 3. ProductHunt 2023 年度最佳产品榜单中的 AI 产品: Dora AI:通过一个 prompt,借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Bard(免费):谷歌推出的官方 ChatGPT 竞争者。 Chat.DID(免费):首个允许人们以人类方式与 AI 进行视频聊天的 APP,处于测试阶段。 Pika(免费):能将创意转化为动态视频的概念 视频平台。
2025-04-08
ai制作网站
以下是一些制作网站的 AI 工具: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成 AI 驱动的 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 选择合适的 AI 网站制作工具时,您可以考虑以下因素: 1. 目标和需求:确定网站目标(如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择符合您技术水平的工具,确保能轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,以满足设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助解决问题。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
AI的发展史
AI(人工智能)的发展历程如下: 1. 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 发展阶段: 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 3. 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 在过去的几十年里,AI 的发展起起落落,经历了多次热度的起伏。如今,生成式 AI 等新技术的出现引发了新的关注和探索。
2025-04-08
AI音频使用了哪些技术
以下是一些关于 AI 音频所使用技术的介绍: 声音检测方面: :通过更强的听觉感知创造卓越的人类体验。 :先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。 :下一代声音 AI 平台,能够像人类一样理解任何声音。 :语音控制的家庭自动化系统。 :世界上首个智能家居听觉系统。 :可用于从音频源中提取隐藏数据的 AI 模型。 :无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。 :为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。 :智能音频穿戴设备。 :将声音转化为信息。 :使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。 音乐方面: :免费的 DAW,提供高质量的人声、鼓点、旋律、贝斯分离、全能音频分离、编辑和人声/乐器转 MIDI 功能。 :AI 音频处理。 :在音乐/视频流媒体和虚拟/增强现实中重新定义音频体验。 :为音乐行业提供按需创建音轨的平台。 :为娱乐行业提供音频分离解决方案,释放经典内容的全部潜力。 :在几秒钟内将任何歌曲的人声和音乐分离。 :基于世界排名第一的 AI 技术的高质量音轨分离。 :使用强大的 AI 算法免费将歌曲中的人声与音乐分离。 :使用 HiFi AI 分离歌曲中的人声、鼓点、贝斯和其他乐器。 :为 DJ 歌手提供的在线 AI 人声移除器。 :人声移除和在线卡拉 OK。 :使用多种不同算法(Demucs、MDX、UVR 等)免费分离歌曲。 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :Wondercraft 使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。
2025-04-08
吉卜力风格的生成是哪个ai
以下 AI 工具可以生成吉卜力风格的图像: Midjourney:仿照 GPTs 里的 MJ prompt 改了一版提示词,可以用在 coze 或者其他国内的 agent 里。不是很挑模型,基本上都可以用。方便的地方在于如果提示词懒得写全,可以让 agent 直接帮助补全润色,黏贴就可以。例如生成一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格的提示词为:A closeup of a huge whale's head with its tired eyes. A little girl in red dress stands beside the whale, gently touching its face. The girl takes up a small portion of the frame, emphasizing the whale's enormity. Created Using: soft colors, gentle lighting, wideangle lens, Ghibli Studio style ar 16:9 style raw niji 6(画面需要改成了 niji) Sora:生成过左半部分为超现实主义风格,细腻刻画皮肤纹理与光影变化,右半部分为吉卜力动画风格,柔和笔触呈现幻想世界魅力的震撼图像。
2025-04-08
我想要系统学习ai大模型应用开发,能帮我制定一个系统学习路线吗?
以下是一个系统学习 AI 大模型应用开发的学习路线: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 7. 参与相关社区交流和项目实践: 总的来说,AI 大模型应用开发是一个多学科、系统性的领域,需要深入的理论学习和工程实践经验相结合。除了学习基础知识,熟练使用开源框架工具也很关键。保持对前沿动态的跟踪,并实际参与相关项目是获得真知灼见的最佳途径。 此外,以下是一个利用 AI+SMART 安排学习计划的案例: 学习目标与个人或职业发展目标的关系:平时工作中需要经常阅读英文文档。另外,有朋友和客户是英文母语者,想要和他们沟通更加顺畅。其次,希望未来有机会进入大型外企工作。 具体学习内容:首先是词汇需要提高,其次听力、口语、阅读和写作这些方面都进行全面提高。 量化学习进度和成功:以考取雅思 8.0,且可以和朋友或客户流利的交谈为目标。 时间框架:半年内。 现实可行性:目前雅思 6.5,每天可以投入 2 小时。周末可以更多。有访问网络课程的条件,也可以购买书籍或其他学习材料。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
雪梅may的100天AI学习笔记
以下是关于雪梅 May 的 100 天 AI 学习笔记的相关内容: 作者介绍: 适合人群:适合纯 AI 小白,可参考日记了解学习路径。 学习模式:输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 学习内容:日记中的学习内容可能因 AI 节奏快而不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间:在半年多时间跨度中,有空时学习,并非每天依次进行。 学习状态:2024 年保持较好状态,不仅学 AI,还看了 33 本书。 费用情况:学习资源免费开源。 第九阶段:学以致用,开源分享 May 花时间复盘过去半年的学习日记,有很棒的发现。 学习路径:迈出第一步→大量学习输入→疯狂模仿→开始自己创造→学的越来越宽越来越杂→积累量变产生质变→开始分享。 特别是学习 coze 的路径:输入→模仿→自发创造,是真实实践得出的规律。 虽费曼学习法主张教会别人是最好学习方式,但开始时自学、输入为主。 现在有分享自信,写学习日记和感受已是分享,后续会有更多分享。 第十一阶段:寻找继续坚持下去的动力 从 24 年 5 月到 25 年 2 月,学完 100 天,仍未找到明确深耕方向。 学习中易遇瓶颈,需找正反馈,开源学习日记获加油是一种方式,还需更好的正反馈继续坚持。
2025-04-08
帮我系统学习AI
以下是为您提供的系统学习 AI 的相关内容: 沃尔夫勒姆在关于“人工智能能解决科学问题吗”的论述中提到,虽然接触过相关内容,但未对该领域文献进行系统研究。其努力得到了 Wolfram 研究所研究员的协助,并感谢了诸多相关人士。 野菩萨的课程在 AI 学习方面备受推荐。其作品风格独特,在小红书上公开了提示词和范例集。若想系统学习本质方法,建议报名课程。野菩萨老师认为人类的审美与博学才是核心竞争力,课程重点在于创意审美和思路以及如何用 AI 激活它们。野菩萨在艺术上感觉在线,在多个领域都有很强的感知。其课程帮助许多同学成为小红书大 V,并发起了相关活动,营造了良好的学习氛围。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08