Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Qwen 多模态模型哪一个最顶?

Answer

目前阿里发布的 Qwen 多模态模型中,Qwen2.5-VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT-4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohu-ai/qwen2-5-vl-285cee 。此外,Qwen2.5-Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQA-Diamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5-max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo 。

Content generated by AI large model, please carefully verify (powered by aily)

References

XiaoHu.AI日报

?Xiaohu.AI日报「2月20日」✨✨✨✨✨✨✨✨1⃣️?阿里发布Qwen2.5-VL多模态模型可处理长达数小时的视频,并在电脑上执行自动化任务。提供3B、7B、72B三种规模,旗舰版对标GPT-4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别。可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。?[https://www.xiaohu.ai/c/xiaohu-ai/qwen2-5-vl-285cee](https://www.xiaohu.ai/c/xiaohu-ai/qwen2-5-vl-285cee)2⃣️?手把手教你在支付宝发布AI机器人可用DeepSeek-R1全系列模型打造属于自己的AI,免费使用不限量。支持通义千问、智谱等多种模型,想怎么玩就怎么玩。在支付宝搜索「百宝箱」,可以找到你的机器人!?[http://tbox.alipay.com](http://tbox.alipay.com)?[https://x.com/imxiaohu/status/1892528728691064862](https://x.com/imxiaohu/status/1892528728691064862)3⃣️?xAI公布Grok 3详情,全部免费开放!基准测试超越GPT-4o、Claude 3.5 Sonnet等顶级模型。支持100万token上下文窗口,预览版仍在训练中。API将在未来几周内发布。?[https://x.ai/blog/grok-3](https://x.ai/blog/grok-3)

2月21日 社区动态速览

1⃣️?阿里发布Qwen2.5-VL多模态模型可处理长达数小时的视频,并执行自动化任务。提供三种规模:3B、7B、72B,旗舰版对标GPT-4o、Claude 3.5 Sonnet。支持手写、表格、图表、化学公式等多场景识别。?[详情](https://www.xiaohu.ai/c/xiaohu-ai/qwen2-5-vl-285cee)2⃣️?手把手教你在支付宝发布AI机器人使用DeepSeek-R1等模型免费打造自己的AI。支持通义千问、智谱等多种模型。通过支付宝的“百宝箱”查找你的机器人。?[详情](http://tbox.alipay.com)3⃣️?xAI公布Grok 3详情,全部免费开放!基准测试超越GPT-4o和Claude 3.5 Sonnet。支持100万token上下文窗口。?[详情](https://x.ai/blog/grok-3)4⃣️?️Google发布PaliGemma 2 Mix开源视觉-语言模型支持图像描述、OCR、目标检测等能力。可达SOTA水准,支持多任务迁移学习。?[详情](https://www.xiaohu.ai/c/xiaohu-ai/google-paligemma-2-mix-ocr)5⃣️?法国“人造太阳”成功点亮22分钟,刷新核聚变纪录

1月29日 社区动态速览

1⃣️?Qwen2.5-Max:阿里通义千问的大型专家模型(MoE)实力:基于SFT和RLHF策略训练,在多项基准如Arena Hard、LiveBench、LiveCodeBench、GPQA-Diamond上超越DeepSeek V3,引发社区关注。更多体验:支持官方Chat、API接口、Hugging Face Demo等多种方式,展示其顶尖性能与灵活应用场景。[?Blog](https://qwenlm.github.io/blog/qwen2.5-max/)|?[Qwen Chat](https://chat.qwenlm.ai)|?[API](https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE)|?[HF Demo](https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo)2⃣️?️Qwen2.5-VL:新一代视觉语言模型多场景支持:可解析1小时以上视频内容并秒级定位事件,识别从金融文档到通用物体,动态适配高分辨率图像。多模态AI代理:具备复杂任务执行能力(手机、电脑),覆盖更多实际场景如票据解析、商业分析等。[?详细介绍](https://www.xiaohu.ai/c/xiaohu-ai/qwen2-5-vl)3⃣️?YuE:全新多模态音乐开源模型

Others are asking
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
qwen
Qwen 2 已开源,具有以下特点和优势: 1. 提供 5 种尺寸的预训练和指令调整模型,包括 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。 2. 除英语和中文外,还接受过另外 27 种语言的数据训练。 3. 在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3。 4. 增大了上下文长度支持,最高达到 128K tokens(Qwen272BInstruct),72B 和 7B 可处理 128k 上下文,57BA14B 可处理 64k 上下文,0.5B 和 1.5B 可处理 32k 上下文。 5. 相比 2 月推出的通义千问 Qwen1.5,实现了整体性能的代际飞跃。在权威模型测评榜单 OpenCompass 中,此前开源的 Qwen1.5110B 已领先于文心 4.0 等一众中国闭源模型,Qwen272B 整体性能相比 Qwen1.5110B 又取得了大幅提升。在 MMLU、GPQA、HumanEval、GSM8K、BBH、MTBench、Arena Hard、LiveCodeBench 等国际权威测评中,Qwen272B 获十几项世界冠军,超过美国的 Llama3。 Qwen2 系列模型的性能突破具有重要意义: 1. 在中国大模型领域,开源模型显示出超越最强闭源模型的势头。 2. 中国的开源大模型,从性能到生态都具备了媲美美国 Llama3 的能力。 通义千问大模型的持续优化和进步,主要依赖强大的大模型研发能力、领先的基础设施能力以及开源社区的充分支持。阿里云是全球唯一一家积极研发先进 AI 模型并且全方位开源的云计算厂商。 体验 Qwen2 系列模型的途径: 1. 已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。 2. Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址:。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 此外,玉宝搞过一个 LLM 的在线评估,里面可以看到国内各个闭源大模型的 HUMANEVAL 测评得分,可以和 QWEN2 对比,网址为:https://www.llmrank.cn/ 。除了美国 Llama 开源生态之外,通义千问已成为全球开发者的另一主流选项。
2025-03-10
qwen.chat
以下是关于 Qwen 的相关信息: 2023 年度中文大模型基准测评报告中提到了 Qwen 的相关模型,如 Qwen14BChat、Qwen72BChat。 1 月 28 日的 Xiaohu.AI 日报中,大年三十发布了 Qwen2.5Max 模型,这是通义千问推出的大型专家模型(MoE),通过 SFT 和 RLHF 策略后训练,性能与顶尖模型竞争,在多个基准测试中超越了 DeepSeek V3,引发了 AI 社区对大规模专家模型的高度关注。相关链接包括: Blog: Qwen Chat: (选择 Qwen2.5Max 模型) API: HF Demo: 1 月 28 日的 Xiaohu.AI 日报中还提到阿里云发布了 Qwen2.5VL:新一代视觉语言模型。
2025-02-21
Qwen 2.5 max 如何访问
Qwen 2.5 Max 可以通过以下方式访问: 1. 目前,Qwen 2.5 Max 已在阿里云百炼平台上架,模型名称为 qwenmax20250125,企业和开发者都可通过阿里云百炼调用新模型 API。 2. 同时,也可以在全新的 Qwen Chat(https://chat.qwenlm.ai/)平台上使用 Qwen 2.5 Max,直接与模型对话,或者使用 artifacts、搜索等功能。 此外,您还可以通过以下链接获取更多相关信息:
2025-02-13
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
qwen2.5-max如何安装
Qwen2.5Max 的安装方式如下: 目前,Qwen2.5Max 已在阿里云百炼平台上架,模型名称为 qwenmax20250125,企业和开发者都可通过阿里云百炼调用新模型 API。同时,也可以在全新的 Qwen Chat(https://chat.qwenlm.ai/)平台上使用 Qwen2.5Max,直接与模型对话,或者使用 artifacts、搜索等功能。 相关链接:
2025-01-30
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
多模态是什么,
多模态指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。 随着生成式 AI 和大模型的发展,我们逐渐进入多模态灵活转换的新时代,即能用 AI 实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换,这一变革依靠一系列革新性的算法。 在感知不同模态数据时,AI 借助高维向量空间来理解,不再局限于传统的单一模态处理方式,将图像或文字“压缩”成抽象的向量,捕捉深层关系。 Gemini 模型本身就是多模态的,展示了无缝结合跨模态的能力,在识别输入细节、聚合上下文以及在不同模态上应用等方面表现出强大性能。
2025-04-13
多模态Agent最新动态
以下是关于多模态 Agent 的最新动态: 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 近期,生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。 从 2022 年 11 月 18 日到 2023 年 7 月 26 日,多模态 Agents 迅速增长。 LLM 多模态 agent 是将现有技术融合的新尝试,是一种集成了多种模态数据处理能力的 AI 技术。 优点:高度的灵活性和扩展性,可根据不同任务需求调用最合适的模型处理任务,适应多样化任务和数据类型,优化资源使用,提升效率;无需训练,系统开发周期快,成本低。 局限性:调试和工程化难度较高,维护和升级成本高;多个组件紧密耦合,单点故障可能导致整个系统风险增加;没有涌现出新的能力。 适用场景:需要综合处理视频、语音和文本等多种信息的复杂环境,如自动驾驶汽车;高度交互和灵活的用户界面,如客户服务机器人或交互式娱乐应用。 《2024 年度 AI 十大趋势报告》 随着大模型对图像和视频信息的处理能力快速提升,预计 2025 年将开始出现更为综合性的多模态交互,AI 能够通过物联网、特定信息等多种感知通道进行协同。 多模态输入和输出使 AI 交互性更强、交互频次更高,适用场景也更加丰富,AI 产品整体水平显著提升。 Agent 作为融合感知、分析、决策和执行能力的智能体,能够根据用户历史行为和偏好,主动提供建议、提醒并个性化执行能力,为用户提供高度个性化的任务。从 2025 年开始,AI Agent 即将广泛投入使用。 从个性化推荐到直接生成个性化内容,AIGC 能够使用户体验的个性化程度有明显提升,这将帮助产品进一步完善用户体验,并通过提高用户忠诚度和迁移成本,实现差异化定价和进一步的服务增值,对产品的差异化竞争有重大意义。目前,基于 AIGC 的高度个性化已经在 AI 教育、AI 陪伴、AI 营销领域有明显进展。在硬件端搭载的多款 AI 智能助手也已开始以高度个性的个人助理作为宣传重点。
2025-03-31
如何构建多模态知识库?
构建多模态知识库可以参考以下步骤: 1. 图像知识库方面:通过多模态的能力对图片信息进行检索理解。效果测试时,上传一张图片,在图像数据库里找到相关信息,然后结合内容进行回复。 2. 构建图片索引: 新建结构化数据表时,将图片索引所在列的字段类型设置为 link。需注意新建数据表后,无法再新增或修改字段类型为 link。 创建结构化知识库时,对于需要建立图片索引的 link 类型字段,在旁边的下拉列表中选择图片。创建知识库后,无法再新建或修改图片索引。 3. 多模态知识库还包括构建图片型索引需结构化数据表,字段类型设置为 link,以实现 FAQ 中向用户推送图片信息。
2025-03-19
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18
【深度拆解】ChatGPT-4o背后的技术革新:从语言模型到多模态跨越
ChatGPT4o 背后的技术革新具有重要意义。人类的感知多样,仅靠语言描述世界远远不够,多模态理解非常有用,能更全面学习世界、理解人类需求等。2023 年 9 月 GPT4v 发布,将大语言模型竞赛带入多模态模型时代,如 ChatGPT 能看图说话、画图,Google 的 Gemini 支持多种模态,但 OpenAI 常抢先发布。今年 5 月 OpenAI 发布 GPT4o,向智能体方向迈进,其是之前技术的集大成者,通过端到端神经网络混合训练视觉、语音和文本数据,平均音频输入反应时间为 300 毫秒,能感悟人类表达的情绪等。OpenAI 未公开 GPT4o 技术细节,唯一线索来自内部炼丹师的博客 AudioLM。此外,GPT4 是 OpenAI 的多模态工具,在编程任务中表现出色,ChatGPT 是用户友好界面,可与高级语言模型交互。2024 年 5 月 14 日 OpenAI 发布 GPT4o,效率高、价格降低、延迟缩短。9 月 16 日 OpenAI 推出 o1 系列模型,在复杂任务中表现优异,o1mini 适合编码任务,两个模型已在 ChatGPT 中提供,有免费或收费版本。
2025-03-09
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14