以下是一些常见的多模态模型排行及相关信息:
,我们推出了具有视觉和语言双模态的模型。|模型|介绍|代码链接|模型下载||-|-|-|-||CogAgent-18B|基于CogVLM-17B改进的开源视觉语言模型。CogAgent-18B拥有110亿视觉参数和70亿语言参数,支持1120*1120分辨率的图像理解,在CogVLM功能的基础上,具备GUI图像的Agent能力。|[CogVLM&CogAgent](https://github.com/THUDM/CogVLM)|[Huggingface](https://huggingface.co/THUDM/CogVLM)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/cogagent-chat/summary)|[Swanhub](https://swanhub.co/ZhipuAI/cogagent-chat-hf)|始智社区||CogVLM-17B|强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM可以在不牺牲任何NLP任务性能的情况下,实现视觉语言特征的深度融合。我们训练的CogVLM-17B是目前多模态权威学术榜单上综合成绩第一的模型,在14个数据集上取得了state-of-the-art或者第二名的成绩。||[Huggingface](https://huggingface.co/THUDM/cogvlm-chat-hf)|[魔搭社区](https://modelscope.cn/models/AI-ModelScope/cogvlm-chat/summary)||Visualglm-6B|VisualGLM-6B是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于[ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B),具有62亿参数;图像部分通过训练[BLIP2-Qformer](https://arxiv.org/abs/2301.12597)构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。|[VisuaGLM](https://github.com/THUDM/VisualGLM-6B)|[Huggingface](https://huggingface.co/THUDM/visualglm-6b)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/visualglm-6b/summary)|
我们评估了模型在四个不同的能力上:使用caption或问答任务(如VQAv2)进行高级对象识别;使用TextVQA和DocVQA等任务进行细粒度转录,要求模型识别low-level的细节;使用ChartQA和InfographicVQA任务要求模型理解输入布局的空间理解以及使用Ai2D、MathVista和MMMU等任务进行多模态推理。对于zero-shot QA评估,模型被指示提供与特定基准对齐的简短答案。所有数字都是通过Greedy Sampling获得的,没有使用任何外部OCR工具。我们发现Gemini Ultra在表7中的各种图像理解基准测试中都是最先进的。它在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。与其他模型(尤其是GPT-4V)公开报告的结果相比,Gemini在zero-shot评估中表现更好。它还超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。Gemini模型的能力在学术基准测试中取得了显著的改进,如MathVista(+3.1%)或InfographicVQA(+5.2%)。MMMU(Yue等人,2023)是一个最近发布的评估基准,其中包含了关于图像的问题,涵盖了6个学科,每个学科中又有多个主题,需要大学水平的知识来解答这些问题。Gemini Ultra在这个基准测试中取得了最好的分数,比最先进的结果提高了5个百分点以上,并在6个学科中的5个学科中超过了以前的最佳结果(见表8),从而展示了它的多模态推理能力。
[Zhang等人(2023)(opens in a new tab)](https://arxiv.org/abs/2302.00923)提出了一种多模态思维链提示方法。传统的思维链提示方法侧重于语言模态。相比之下,多模态思维链提示将文本和视觉融入到一个两阶段框架中。第一步涉及基于多模态信息的理性生成。接下来是第二阶段的答案推断,它利用生成的理性信息。多模态CoT模型(1B)在ScienceQA基准测试中的表现优于GPT-3.5。图片来源:[Zhang et al.(2023)(opens in a new tab)](https://arxiv.org/abs/2302.00923)进一步阅读:[语言不是你所需要的全部:将感知与语言模型对齐(opens in a new tab)](https://arxiv.org/abs/2302.14045)(2023年2月)