Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能算法的发展历程是怎么样的?

Answer

人工智能算法的发展历程大致如下:

  • 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法-贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。
  • 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 Turing-NLG 系列神经网络取得了巨大成功。
  • 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。
  • 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。
  • AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。
  • 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
Content generated by AI large model, please carefully verify (powered by aily)

References

人工智能简介和历史

早期的国际象棋对弈程序是以搜索为基础的——程序尝试估计对手在给定棋步数量下可能走的棋步,并根据在几步棋内所能达到的最佳位置选择最佳棋步。这带来了[阿尔法-贝塔剪枝](https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning)搜索算法的发展。搜索策略在对局即将结束时效果很好,因为此时搜索空间对应的棋步可能性局限在非常小的范围内。然而在对局刚刚开始时,搜索空间非常巨大,需要考虑通过学习人类棋手之间的现有对局来改进算法。随后的实验采用了[基于案例的推理](https://en.wikipedia.org/wiki/Case-based_reasoning),即程序在知识库中寻找与当前棋局位置非常相似的案例,以此来决定自己的棋步。能够战胜人类棋手的现代对弈程序都基于神经网络和强化学习,程序通过长时间与自己的对弈,从自己的错误中学习,以此来学会下棋,这与人类学习下棋的过程非常相似。不过,计算机程序可以用更少的时间下更多的棋,因此学习速度更快。✅对人工智能玩过的其他游戏做一个小调研。同样,我们可以看到创建“会说话的程序”(可能通过图灵测试)的方法是如何变化的:早期的此类程序,如[Eliza](https://en.wikipedia.org/wiki/ELIZA),基于非常简单的语法规则,并将输入的句子重新表述为一个问题。Cortana、Siri或谷歌助手(Google Assistant)等现代助手都是混合系统,它们使用神经网络将语音转换成文本,并识别我们的意图,然后采用一些推理或明确的算法来执行所需的操作。未来,我们可以期待一个完整的基于神经网络的模型来独立处理对话。最近的GPT和Turing-NLG系列神经网络在这方面取得了巨大成功。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

Machine Learning算法一般通过分析数据和推断模型来建立参数,或者通过与环境互动,获得反馈来学习。人类可以注释这些数据,也可以不注释,环境可以是模拟的,也可以是真实世界。Deep LearningDeep Learning是一种Machine Learning算法,它使用多层神经网络和反向传播(Backpropagation)技术来训练神经网络。该领域是几乎是由Geoffrey Hinton开创的,早在1986年,Hinton与他的同事一起发表了关于深度神经网络(DNNs-Deep Neural Networks)的开创性论文,这篇文章引入了反向传播的概念,这是一种调整权重的算法,每当你改变权重时,神经网络就会比以前更快接近正确的输出,可以轻松的实现多层的神经网络,突破了1966年Minsky写的感知器局限的魔咒。配图03:Geoffrey Hinton&Deep Neural NetworksDeep Learning在2012年才真正兴起,当时Hinton和他在多伦多的两个学生表明,使用反向传播训练的深度神经网络在图像识别方面击败了最先进的系统,几乎将以前的错误率减半。由于他的工作和对该领域的贡献,Hinton的名字几乎成为Deep Learning的代名词。数据是新的石油Deep Learning是一个革命性的领域,但为了让它按预期工作,需要数据。而最重要的数据集之一,就是由李飞飞创建的ImageNet。曾任斯坦福大学人工智能实验室主任,同时也是谷歌云AI/ML首席科学家的李飞飞,早在2009年就看出数据对Machine Learning算法的发展至关重要,同年在计算机视觉和模式识别(CVPR)上发表了相关论文。配图04:FeiFei Li&ImageNet

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

Others are asking
人工智能的意义
人工智能具有多方面的重要意义: 从监管角度看,有效监管人工智能需要对其有共同的理解。目前对于人工智能没有广泛共识的通用定义,但通过参考其“适应性”和“自主性”这两个产生定制监管响应需求的特性来定义。“适应性”使解释系统结果的意图或逻辑变得困难,“自主性”使结果的责任分配变得困难。 从产业发展角度看,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产模式和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设发挥重要支撑作用。我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模,伴随新技术加速迭代,呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 从学科本身角度看,人工智能是一门研究如何使计算机表现出智能行为,例如做人类擅长之事的科学。对于一些无法明确编程的任务,如根据照片判断人的年龄,正是人工智能感兴趣的领域。在金融、医学和艺术等领域,人工智能也带来了诸多益处。
2025-03-28
我希望了解人工智能大模型公司的整体产业情况
以下是关于人工智能大模型公司的整体产业情况: 2024 年被称为国内大模型落地元年,经过一年时间的发展,呈现出以下特点: 1. 竞争格局:国内大模型行业基本形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争态势。 2. 落地增长:2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长。中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 3. 厂商表现:百度在中标数量和金额方面排名所有厂商之首,科大讯飞居第二。在金融行业,百度也排名第一。 4. 行业应用:在智能终端行业,超半数手机厂商使用文心大模型,多家车企已接入百度文心大模型。 5. 能力要求:大模型进入产业落地后,除模型本身能力外,落地应用所需的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业落地大模型需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正成为体系化之战。 此外,2023 年国内大模型发展情况包括:智谱推出了 4 代 GLM,MiniMax 推出新模型及“星野”APP,月之暗面在长 Token 能力上表现出色。但在 2C 端真正出圈的产品较少,在 2B 行业中,大模型对收入撬动有限。硬件层上,国内仍缺乏胜任大模型训练的芯片,华为昇腾在单卡指标上接近,但存在稳定性和生态问题。
2025-03-27
人工智能是什么,有什么用
人工智能(AI)是一种能够模拟人类智能的技术。它已经在众多领域发挥着重要作用,为社会带来了广泛的益处。 以下是一些主要的应用场景: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新疗法。 个性化医疗:根据患者数据提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(相关具体应用未在提供的内容中明确提及) 在法律法规方面,各国和地区都在制定相关规则,以规范人工智能的发展和应用,确保其在带来益处的同时,降低可能产生的风险。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
我是新手小白,先学习人工智能开发,从而找工作,如何开始
对于新手小白想要学习人工智能开发从而找工作,可以按照以下步骤开始: 1. 了解自身硬件情况和财力,选择合适的开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的,可以使用在线工具,包括在线出图和云电脑,根据实际情况选择,前者功能可能受限,后者需手动部署。 配台电脑:不建议一开始就配主机,玩几个月后仍对 AI 有兴趣再考虑,主机硬盘要大,显卡在预算内买最好,其他随意。 2. 学习相关课程: 先验经验:需要熟练使用文生图、图生图,有一定逻辑思考和推理能力,适合炼丹新人、小白。 课程安排:课程约 70 80%是理论和方法论内容,大部分练习在课外沟通、练习,少部分必要内容在课上演示。 学习路径:必学、必看内容是基础课,解决环境和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具安装教程;正式内容分为数据集预处理、模型训练以及模型调试及优化三个部分。 3. 进行项目实践,例如: 可以参考“齐码蓝:你(或孩子)还需要学编程吗?AI 编程 Master GPTs”中的项目,先进行需求分析与项目规划,包括功能需求(如每个离谱生物的页面展示图片、头像、文字介绍,支持文字和语音对话,展示相关离谱事件)和非功能需求(页面加载速度快、用户界面友好、支持响应式设计),以及用户故事(如访客浏览不同离谱生物档案、了解背景故事和相关事件、进行文字或语音交流)。 然后进行架构设计与模块化,采用前后端分离架构,前端负责展示界面和用户交互,后端负责处理业务逻辑和数据存取,通过 REST API 实现前后端交互,模块化分为前端模块(生物档案组件、事件展示组件、对话组件)和后端模块(生物档案 API、事件 API、语音处理 API)。 4. 了解法律法规:阅读《促进创新的人工智能监管方法》,了解 AI 在社会和经济中的应用和影响,以及相关的监管环境。
2025-03-24
我是新手小白,先学习人工智能,如何开始
对于新手学习人工智能,您可以按照以下步骤开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-24
minimax的大模型算法热点
以下是关于 MiniMax 的大模型算法热点的相关内容: 1. MiniMax 有两个适合特定任务的大模型:MiniMaxText01 支持 400 万 token 的上下文,能应对超长文章;T2A v2(speech01turbo)拥有最好的声音复刻效果。可以通过其开放平台(https://platform.minimaxi.com/login )进行注册登录及实名认证。首次注册会赠送 15 元,API 消耗会消耗余额,生成一条 3 分钟的语音,文本模型消耗 1 分钱,语音模型消耗 5 毛钱,克隆音色有额外费用,现优惠 9.9 元。接着创建 API Key 并保存好,以及 groupid。还可以克隆声音,相关链接为 https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning ,有创建 voice id、上传复刻音频及音频 prompt、试听文本等操作,勾选用户协议点击“克隆”选项一段时间后完成克隆,使用填写的 voice id 生成声音。 2. MiniMax 推出了 MoE 架构的新模型,其“星野”是目前国内最成功的 AI 陪聊 APP。 3. MiniMax 近日发布新模型 MiniMax01,采用线性注意力机制和 MoE 架构,显著提升上下文处理能力,支持超长上下文(400 万 Token),在多项学术基准上表现优异,超越许多国际顶尖模型。其开源旨在促进长上下文研究和应用,加速 Agent 时代的到来,通过精细架构设计和训练策略,在处理长输入时实现接近线性的计算效率。
2025-03-28
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
ai算法该从哪里开始学习
学习 AI 算法可以从以下几个方面入手: 1. 神经网络和深度学习方面: 了解麦卡洛克皮兹模型,感知机的学习机制,如罗森布拉特受唐纳德·赫布基础性工作的启发想出的让人工神经元学习的办法,包括赫布法则。 熟悉感知机学习算法的具体步骤,如从随机权重和训练集开始,根据输出值与实例的差异调整权重,直到不再出错。 2. Python 与 AI 基础方面: 掌握 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其关系,以及 AI 的发展历程和重要里程碑。 巩固数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 学习算法和模型,包括监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 了解模型的评估和调优方法,如性能评估(包括交叉验证、精确度、召回率等)、模型调优(如使用网格搜索等技术优化模型参数)。 熟悉神经网络基础,如网络结构(包括前馈网络、卷积神经网络、循环神经网络)、激活函数(如 ReLU、Sigmoid、Tanh)。 3. 强化学习方面: 了解在人工智能发展中,利用新算法解决挑战性问题的思路,如在某些领域找到适合的模拟任务环境进行训练和学习,不依赖人类专家先验。 以 AlphaZero 为例,理解其模型公式,包括定义神经网络、网络权重、棋盘状态表示、网络输出等。
2025-03-15
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
AI绘画的技术演进历程
AI 绘画的技术演进历程如下: 早期,AI 绘画成果较为简单和粗糙。但随着技术进步,尤其是深度学习算法如卷积神经网络等的应用,AI 绘画能够生成更加复杂、逼真和富有创意的图像。如今,它已涵盖各种风格和题材,从写实到抽象,从风景到人物,并在与人类艺术家的互动和融合中不断创新。 在艺术创作方面,AI 绘画利用机器学习和深度学习等技术,模拟人类创作过程,生成令人惊叹的作品,为艺术家提供新工具,为观众带来新体验。它打破了传统手工绘画技巧的局限,通过编程、算法和数据分析等开拓新创作领域,让缺乏绘画技巧的人也能参与艺术创作,使艺术更具民主化和包容性。 在应用场景上,AI 绘画在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景和角色形象,提高开发效率;在影视制作中辅助生成特效场景和概念设计;在建筑设计中帮助构想建筑外观和内部布局。 同时,AI 绘画对艺术界的影响是复杂且双面的。它既提供了新的创作工具和可能性,也引发了关于艺术本质、创造性、版权和伦理的重要讨论。艺术界的反馈使 AI 在绘画方面有显著进展,但其在表达情感和创造性意图方面仍存在局限性,也引发了艺术家对版权、原创性和伦理问题的担忧,带来了对文化创意领域从业者职业安全的焦虑以及“侵权”嫌疑的反对之声。尽管存在争议,AI 绘画仍为艺术创作提供了新的可能性,帮助艺术家探索新创意表达方式,提高制作效率,降低制作成本,促进艺术与观众的互动,提供个性化和互动的艺术体验。
2025-03-22
通义千问发展历程
通义千问是阿里云推出的大语言模型。于 2023 年 4 月 11 日在阿里云峰会上正式发布 1.0 版本。9 月 13 日,通义千问大模型首批通过备案。10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。9 月,通义千问 2.5 系列全家桶开源。
2025-03-20
AI的发展历程
AI 的发展历程可以大致分为以下几个阶段: 1. 起步阶段(20 世纪 50 年代 60 年代):这一时期的研究重点是基于符号主义的推理和问题解决。 2. 低谷阶段(20 世纪 70 年代 80 年代):由于计算能力和数据的限制,AI 的发展遭遇了挫折。 3. 复苏阶段(20 世纪 80 年代 90 年代):专家系统等技术的出现推动了 AI 的发展。 4. 快速发展阶段(21 世纪初至今):随着大数据、深度学习算法和强大计算能力的出现,AI 在图像识别、语音识别、自然语言处理等领域取得了显著成就。
2025-03-19
deepseek公式的发展历程
DeepSeek 公式的发展历程如下: 2025 年 2 月 9 日,陈财猫分享提示词及小说创作心得,提到 DeepSeek 热度极高,微信指数达 10 亿多次,并准备先讲讲该模型的特点。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发了一场小范围的轰动。
2025-02-11
openAI过去几年的发展历程
OpenAI 在过去几年的发展历程如下: 在整个团队的努力下,迎来了技术高速发展的“黄金三年”,在自然语言处理领域取得突破性进展,推出了 GPT1、GPT2 和 GPT3 系列模型,每次模型迭代都使模型复杂度成指数级别上升,模型效果也越来越好。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 大约九年前创立,怀揣着对 AGI 潜力的坚定信念,渴望探索如何构建并使其惠及全人类。 创始人山姆·奥特曼回首创业历程,认为虽然有挑战和不愉快,但收获和成长巨大,也暴露出团队在管理上的不足。 展望 2025 年,坚信首批 AI Agent 将融入劳动力市场,目标已瞄准真正意义上的超级智能。新的一年充满反思,随着 AGI 脚步临近,是回顾公司发展历程的重要时刻。
2025-02-11
推荐可以做以时间轴的个人成长历程长页的工具
目前在 AI 领域中,暂时没有专门用于制作以时间轴呈现个人成长历程长页的特定工具。但您可以考虑使用一些通用的设计和内容创作工具来实现这一需求,例如 Adobe InDesign、Canva 等,它们具有丰富的模板和设计功能,能够帮助您创建出具有时间轴效果的个人成长历程页面。
2025-01-15
知识表示与推理发展过程中有哪些里程碑式的技术
在知识表示与推理的发展过程中,具有以下里程碑式的技术: 1. 知识图谱: 于 2012 年 5 月 17 日由 Google 正式提出,旨在提高搜索引擎能力,增强用户搜索质量和体验。 关键技术包括知识抽取(实体抽取、关系抽取、属性抽取)、知识表示(属性图、三元组)、知识融合(实体对齐、知识加工、本体构建、质量评估、知识更新)、知识推理。 2. Symbolic Agent: 时间:20 世纪 50 70 年代。 特点:基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。 技术:基于规则的系统、专家系统,如 MYCIN、XCON 等。 优点:明确的推理过程,可解释性强。 缺点:知识获取困难,缺乏常识,难以处理模糊性。
2025-03-27
我是一名大一学生,我想创业,我有创业点子,我需要自己利用ai来开发app。我刚刚加入这个社群,我没有编程基础,也不怎么擅长用ai,并且我得不到ai创投圈以及科技发展的最新消息,不会用飞书,不会用这个社群。以利用ai开发app为最终目的的导向,我应该怎么做
以下是为您提供的建议,以帮助您利用 AI 开发 APP 并实现创业目标: 1. 了解有趣的产品案例:例如对话情绪感知助手,它能帮助用户理解社交场景并提供合适话术;剧本杀创作平台,具备剧本润色和 AI 测本功能;插件图标生成器,解决了开发插件时的图标制作难题。 2. 学习优秀作品:像插图神器、拍个明白、3 秒变现想法落地等,部分有公开网页和开源代码,可供试用和借鉴。 3. 掌握工具使用方法:例如 tree 等 AI 编程工具,即使不会编程也能通过自然语言交互生成代码和解决问题。 4. 借鉴学生经验:湖南大学齐国皓分享了用 tree 工具带领非技术专业同学做案例的经验。 5. 关注产品规划和愿景:如 CubeOne 会尽快上线手动编辑功能,其 AI 能力也将在月底有大更新,团队愿景是为人们带来世界上最好的做演讲的体验。 6. 参考创业实践:有大四学生在湖南大学利用 AI 编程工具进行 AI 加金融交易方面的创业。 7. 积极参与案例分享与交流:在飞书群等平台分享和获取更多案例链接。 总之,您需要多学习成功案例和工具使用方法,借鉴他人经验,明确产品规划和愿景,积极参与交流,逐步实现利用 AI 开发 APP 的创业目标。
2025-03-27
给我找一些介绍ai发展历史的文章。
以下是为您找到的关于 AI 发展历史的相关内容: 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,自此开始,一股 AI 浪潮席卷全球,但 AI 并非近几年才出现。其起源最早可追溯到上世纪的 1943 年。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。 1956 年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能(Artificial Intelligence)一词被正式提出,并作为一门学科被确立下来。 此后接近 70 年的漫长时间里,AI 的发展起起落落,两次掀起人类对 AI 毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。 此外,知识库中还整理了 OpenAI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-26
ai发展路径
AI 的发展路径如下: 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 学习路径: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++ 等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-25
AI发展技术原理脑图
以下是关于 AI 发展技术原理的相关内容: 腾讯研究院发布的“AI50 年度关键词”报告,基于全年三十余万字的 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,通过“快思考”与“慢思考”两种维度进行分析,形成 50 张 AI 技术图景卡片。其中“快思考”维度采用人机协同方式呈现印象卡片,“慢思考”维度深入分析技术发展底层逻辑。 DiT 架构是结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型,其带来了图像生成质的飞跃,且 Transformer 从文本扩展至其他领域,Scaling Law 在图像领域开始生效。 从 AI 发展历程来看,自 1950 年提出至今短短几十年,在国内近 20 年随着互联网发展才开始普及。最初应用主要是基于 NLP 技术的聊天和客服机器人,随后中英文翻译、语音识别、人脸识别等技术取得突破并广泛应用。但以前模型应用范围相对狭窄,而 OpenAI ChatGPT 等大型语言模型的突破展示了新的发展路线,通过大规模模型预训练可涌现出广泛智能应用。 小白理解 AI 技术原理与建立框架的相关内容包括:思维链可显著提升大语言模型在复杂推理的能力;RAG 是检索增强生成,可搭建企业和个人知识库;PAL 是程序辅助语言模型;ReAct 是 reason 与 action 结合的框架,可让模型动态推理并与外界环境互动。 希望以上内容对您有所帮助。
2025-03-24
AI发展背后是哪些技术进步推动的,原理是什么?
AI 发展背后主要由以下技术进步推动: 1. 核心架构:Transformer 和 Diffusion 这两种架构分别在数据转换和数据向图像转换方面发挥了关键作用,构成了当前 AI 技术的基石。 2. 算力提升:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供强大支持。 3. 人才网络:AI 领域的关键人才大多源自 Google 及其相关实验室和收购的公司,形成强大人才网络,推动了技术发展,并培养了一批领军人物,人才在不同公司间的流动和合作促进了 AI 技术的快速进步。 其原理在于:这些技术的协同作用使得 AI 能够更高效地处理和分析大量数据,实现更复杂的任务和功能。例如,强大的算力能够支持大规模的数据训练和模型优化,优秀的架构能够提高数据处理和模型表达能力,而人才的创新和合作则不断推动技术的突破和应用拓展。
2025-03-24