Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

所以我可以理解为CNN是一种图像分类识别的AI算法技术吗

Answer

卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。

ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。

连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。

虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。

Content generated by AI large model, please carefully verify (powered by aily)

References

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

该数据集对研究人员非常有用,正因为如此,它变得越来越有名,为最重要的年度DL竞赛提供了基准。仅仅七年时间,ImageNet让获胜算法对图像中的物体进行分类的准确率从72%提高到了98%,超过了人类的平均能力。ImageNet成为DL革命的首选数据集,更确切地说,是由Hinton领导的AlexNet卷积神经网络(CNN-Convolution Neural Networks)的数据集。ImageNet不仅引领了DL的革命,也为其他数据集开创了先例。自其创建以来,数十种新的数据集被引入,数据更丰富,分类更精确。神经网络大爆发在Deep Learning理论和数据集的加持下,2012年以来深度神经网络算法开始大爆发,卷积神经网络(CNN)、递归神经网络(RNN-Recurrent Neural Network)和长短期记忆网络(LSTM-Long Short-Term Memory)等等,每一种都有不同的特性。例如,递归神经网络是较高层的神经元直接连接到较低层的神经元。来自日本的计算机研究员福岛邦彦(Kunihiko Fukushima)根据人脑中视觉的运作方式,创建了一个人工神经网络模型。该架构是基于人脑中两种类型的神经元细胞,称为简单细胞和复杂细胞。它们存在于初级视觉皮层中,是大脑中处理视觉信息的部分。简单细胞负责检测局部特征,如边缘;复杂细胞汇集了简单细胞在一个区域内产生的结果。例如,一个简单细胞可能检测到一个椅子的边缘,复杂细胞汇总信息产生结果,通知下一个更高层次的简单细胞,这样逐级识别得到完整结果。配图05:深度神经网络如何识别物体(TensorFlow)

让机器理解世界 / GPT 时代人类再腾飞·译者序

采访中,欣顿教授透露,因为不愿意接受五角大楼的资助,在20世纪80年代,他辞去了卡内基梅隆大学计算机科学教授的工作,只身前往加拿大多伦多大学,继续从事神经网络的研究。欣顿教授对AI领域最大的贡献是一种叫作反向传播([Backpropagation](https://en.wikipedia.org/wiki/Backpropagation?ref=indigox.me))的算法,这是他与两位同事在20世纪80年代中期首次提出的,这项技术让人工的神经网络实现了“学习”,如今它几乎是所有机器学习模型的基石。简而言之,这是一种反复调整人工神经元之间连接权重的方法,直到神经网络产生能达到预期的输出。连接主义的全面逆袭从2012年开始,那年欣顿教授和他在多伦多大学的两名学生伊尔亚·苏茨克维([Ilya Sutskever](https://en.wikipedia.org/wiki/Ilya_Sutskever?ref=indigox.me))和亚历克斯·克里切夫斯基([Alex Krishevsky](https://en.wikipedia.org/wiki/Alex_Krizhevsky?ref=indigox.me))建立了一个神经网络——[AlexNet](https://en.wikipedia.org/wiki/AlexNet?ref=indigox.me),可以分析成千上万张照片,并教会人们识别常见的物体,如花、狗和汽车。使用反向传播算法训练的卷积神经网络([Convolution Neural Networks](https://en.wikipedia.org/wiki/Convolutional_neural_network?ref=indigox.me),CNN)在图像识别方面击败了当时最先进的逻辑程序,几乎使以前的错误率降低了一半。从2012年到现在,深度神经网络的使用呈爆炸式增长,进展惊人。现在机器学习领域的大部分研究都集中在深度学习方面,人类第一次开启了AI的潘多拉魔盒!

学习Hinton老爷子的胶囊网络,这有一篇历史回顾与深度解读

虽然CNN模型的提出取得了显著的成果并解决了许多问题,但是它在某些方面还是存在许多缺陷。CNN最大的缺陷就是它不能从整幅图像和部分图像识别出姿势,纹理和变化。具体来说,由于CNN中的池化操作使得模型具有了空间不变性,因此模型就不具备等变(equivariant).如下图所示,CNN会把第一和第二幅图都识别为人脸,而把第三幅方向翻转的图识别为不是人脸。另外,池化操作使得特征图丢失了很多信息,它们因此需要更多训练数据来补偿这些损失。就特点上而言,CNN模型更适合那些像素扰动极大的图像分类,但是对某些不同视角的图像识别能力相对较差。图1.识别示意图。图源:https://www.spiria.com/en/blog/artificial-intelligence/deep-learning-capsule-network-revolution/因此,在2011年,Hinton和他的同事们提出了胶囊网络(CapsNet)作为CNN模型的替代。胶囊具有等变性并且输入输出都是向量形式的神经元而不是CNN模型中的标量值[1]。胶囊的这种特征表示形式可以允许它识别变化和不同视角。在胶囊网络中,每一个胶囊都由若干神经元组成,而这每个神经元的输出又代表着同一物体的不同属性。这就为识别物体提供了一个巨大的优势,即能通过识别一个物体的部分属性来识别整体。

Others are asking
AI在财务的运用
AI 在财务领域有以下运用: 1. 更动态的预测和报告: 帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化。 从更广泛、更复杂的数据集中发现模式,为预测建议输入,并适应模型为公司决策提供依据。 自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析。 帮助综合、总结税法和潜在扣除项,并提出可能答案。 自动生成和调整合同、采购订单和发票以及提醒。 2. 具有成本效益的运营: 使从多个位置获取数据的劳动密集型功能效率提高 1000 倍。 有助于理解非结构化的个性化情境和非结构化的合规法律。 此外,截至 2024 年 10 月 15 日,美国融资金额超过 1 亿美元的 AI 公司(部分)有: |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners,Index Ventures,Sutter Hill Ventures|| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund,Ramp 联合创始人 Eric Glyman,Stripe 联合创始人 Patrick 和 John Collison,DoorDash 联合创始人 Tony Xu|| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital,ARCH Venture Partners|| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue,Sequoia,Redpoint,Accel|| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金,M Ventures,淡马锡,Tyche Partners|| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital,Hamilton Lane,Blumberg Capital,Team8|| 信息来源:Techcrunch
2025-03-09
AI应该如何学习
以下是关于 AI 学习的全面指导: 对于新手学习 AI: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品,知识库也提供了很多实践后的作品和文章分享。 5. 体验 AI 产品:与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 对于中学生学习 AI: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解最新进展,思考其对未来社会的影响,培养思考和判断能力。 在医疗保健领域,为了让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和正规学校教育开始,再通过学徒实践,面对面从出色实践者那里学习。对于 AI,应通过堆叠模型训练,而不仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。就像医学生从基础课程开始,科学家也需多年化学和生物学学习及博士研究,这种学习方式有助于培养处理细微差别决策的直觉。
2025-03-09
AI学习资料
以下是为您提供的 AI 学习资料: 入门指南:强化学习 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 学习计划:以搞懂 DQN 算法作为入门目标。 新手学习 AI 了解 AI 基本概念:阅读「」熟悉术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始学习之旅:在「」中找到初学者课程,推荐李宏毅老师课程。通过在线教育平台(如 Coursera、edX、Udacity)按节奏学习,有机会获证书。 选择感兴趣模块深入学习:如掌握提示词技巧。 实践和尝试:理论学习后实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品:如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人。 支线剧情共创 AI 出图教学及资料 MJ 官方手册:https://docs.midjourney.com/ Prompt 魔法书:https://aituts.ck.page/promptsbook eSheep: 如何在 MJ 中保持角色一致性: AI 视频教学及资料 什么是相似形转场:
2025-03-09
最近比较好的微信ai小程序
以下是为您找到的一些微信 AI 小程序相关信息: 妙刷:是一款微信 AI 小程序,有很多基于“多模态应用”方向的探索。已经运行上线了一段时间,积累了多种风格主题,新出的“魔法物品搜集手册”曾小火。 目前暂未获取到更多其他微信 AI 小程序的详细信息。如果您想了解更多关于微信 AI 小程序的内容,建议您通过相关的科技资讯网站或公众号进一步搜索。
2025-03-09
如何通过AI来实现量化
通过 AI 实现量化可以从以下几个方面入手: 1. 量化 AI 助手应用: 详细函数介绍:提供量化 API 中各个函数的详细说明和使用示例。 策略代码生成:根据具体需求,快速生成可用的量化策略代码。 错误解决方案:针对 Python 报错,提供可能的解决方案。 优化建议:帮助优化策略代码逻辑,提升策略性能。 2. 模型量化技术: 将 16 位降至 8 位或 4 位是可能的,但不能使用硬件加速浮点运算。若想对更小的类型进行硬件加速,需使用小整数和矢量化指令集。 量化过程:首先找出权重的最大值和最小值,然后将数值范围划分为整数类型中可用的桶数,8 位为 256 桶,4 位为 16 桶。这就是训练后量化(posttraining quantization),也是量化模型的最简单方法。 量化方法:市面上主要有两类量化方法,如 GPTQ(主要针对英伟达的 GPU)、GGML(侧重于 CPU 优化,主要针对苹果 M1 和 M2 芯片做优化)。 3. 相关产品推荐: Composer Trading:这是一个旨在彻底改变个人创建和管理投资策略方式的平台。它提供由人工智能驱动的策略创建工具,允许用户用自然语言解释目标、策略和风险关注点,AI 辅助编辑器会为其创建策略。该平台还提供各种类别的预构建策略选择,如长期、技术重点和多样化等,用户可以立即进行投资。同时,它强调数据驱动式交易方法,避免情绪或轰动影响。此外,它作为经纪商,提供全自动交易执行,采用无佣金模式,通过简单固定月度订阅透明定价。用户可以在承诺之前免费测试该平台。定制是其关键特性,每个策略都是完全可编辑的,用户可以使用无代码视觉编辑器修改策略、调整参数,并对其进行不同权重或条件应用。该平台还允许根据用户定义的标准从候选者池中进行动态选择。回测可帮助用户学习并调整战略,并且可以将其与基准或其他战略进行比较。Composer 还计算费用、滑点以及战术最终价值,提供潜在结果全面视图。
2025-03-09
我在完成一篇论文,能不能给我一些论文相关的AI提示词
以下是为您提供的一些论文相关的 AI 提示词示例: 1. 对于法律文章写作: 敕令法律文章撰写 author:叁随道人 version:1.0(20240626) language:中文 2. 对于一般性的论文写作: 这意味着您不能期待设计一个完美的提示词,然后 AI 百分百给到您一个完美的符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。您要给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生,您也需要在对话中来限缩自己思维中的模糊地带。 现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前 AI 时代的“机器编程”思路来进行 AI 的“自然语言编程”。对于想要尝试 AI 的朋友们,建议多给到 AI 几轮对话修正的余地,不要期望输入一次提示词 AI 就能给到您想要的东西,毕竟很多时候其实您自己刚开始也不知道自己想要什么。 3. 对于文生图相关的论文: 英文为:,drawing,paintbrush 。括号和:1.2,都是用来增加权重的,权重越高在画面中体现越充分,同样提示词的先后顺序也会影响权重。 反向提示词:NSFw,,(toomany finger
2025-03-08
GRU+CNN模型如何操作
GRU+CNN 模型的操作主要包括以下步骤: 1. 编码器部分:使用预训练的卷积神经网络(CNN),如 Inception Resnet V2,将输入图像转换为一组特征向量。在这种情况下,大部分 CNN 部分被冻结,保留预训练的权重。 2. 解码器部分:结构较为复杂,涉及到注意力机制、嵌入层、GRU 层、添加层归一化层和最终的密集层等。可以找到很多关于注意力层和解码器步骤的说明。 3. 组合模型:将编码器和解码器组合在一起,形成一个完整的图像字幕生成模型。 4. 自定义损失函数:由于任务是生成文本序列且序列长度可能不同,使用稀疏分类交叉熵作为损失函数,并屏蔽填充的部分。 5. 编译模型:编译模型,为开始训练做准备。 6. 训练模型:可以根据需求进行更多训练以获得更好结果。 7. 推理与生成字幕:训练完成后,为新的图像生成字幕。在推理阶段,需要重构解码器模型,使其可以接收额外的 GRU 状态输入,并编写自定义推理循环,一次产生一个单词,直到生成完整句子。
2025-03-05
CNN的主要应用是什么?
CNN(卷积神经网络)主要应用于以下领域: 1. 模式识别任务,在计算上比大多数其他架构更有效、更快速。 2. 自然语言处理,已被用来击败大多数其他算法。 3. 图像识别,用于图像特征提取。 4. 推荐系统,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 5. 视觉分析,在 CV(计算机视觉)中发挥核心作用,经历了从零开始的深度学习、有监督、无监督和自监督等阶段。
2024-07-29
判别式CNN到生成式大模型的发展
判别式 CNN 到生成式大模型的发展经历了以下几个阶段: 1. 早期发展(2014 年以前):最初的文生图尝试集中在将简单文本描述转化为图像。这些早期方法依赖于基本的图像处理技术和简单的模型,效果有限,生成的图像质量通常不高。 2. 深度学习的崛起(2014 年2018 年):随着深度学习的发展,尤其是卷积神经网络(CNN)的成功应用,文生图模型开始采用神经网络来改进图像生成的质量和多样性。在这一时期,如 GAN(生成对抗网络)及其变体层出不穷,开始被用于文生图任务,展示了生成更逼真图像的潜力。 3. 引入 Transformer(2019 年2021 年):Transformer 架构,原本在 NLP 领域取得巨大成功,开始被应用于文生图模型,提高模型处理复杂文本和生成高质量图像的能力。如 OpenAI 的 DALLE 模型,采用了 Transformer 结构来生成与文本描述匹配的图像,成为这一时期的标志性进展。与此同时,以 DDPM 为代表的工作,为 Diffusion Model 奠定了理论基础,众多基于 Transformer 和 Diffusion Model 的研究成果从 2021 下半年开始如雨后春笋般涌现。
2024-04-16
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
用lua语言写一个a星算法
很抱歉,目前知识库中没有关于用 Lua 语言编写 A 星算法的相关内容。但我可以为您提供一个 A 星算法的基本框架和思路,您可以根据这个来尝试用 Lua 语言实现: A 星算法是一种在图形中寻找最短路径的常见算法。以下是其基本步骤: 1. 初始化 创建开放列表和关闭列表。 将起始节点添加到开放列表,并设置其 g 值(从起始节点到当前节点的实际代价)为 0,f 值(f = g + h,其中 h 是从当前节点到目标节点的估计代价)为 h 值。 2. 主循环 从开放列表中取出 f 值最小的节点作为当前节点。 将当前节点从开放列表移到关闭列表。 对于当前节点的所有相邻节点: 如果相邻节点在关闭列表中,跳过。 计算相邻节点的 g 值(通过当前节点的 g 值加上从当前节点到相邻节点的代价)。 如果相邻节点不在开放列表中,将其添加到开放列表,并设置其 g 值和 f 值。 如果相邻节点已经在开放列表中,且新计算的 g 值更小,更新其 g 值和 f 值。 3. 找到目标节点 当目标节点被添加到关闭列表时,算法结束。通过从目标节点回溯到起始节点,即可得到最短路径。 希望以上内容对您有所帮助,祝您成功实现用 Lua 语言编写 A 星算法。
2025-02-19
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11
请给出图像智能修改的智能体
以下是一些关于图像智能修改的智能体相关信息: 在一键改图工作流方面:此过程未用大模型,未消耗 token。每次生成结果唯一,无种子概念,无法保存特定结果。调好后可配东北大花袄等背景,修改名字便于排查问题。用户界面可直接拿到返回变量值,返回文本需手动以 Markdown 格式拼接变量。点击立即生成按钮可添加多种事件,表单默认有点击时事件,表单提交时可调用工作流并传入对应参数。表单有 unsubmit、error 和数据改变时等事件,可设置提交时调用工作流,限制上传文件数量,表单提交时可设置禁用态。对左侧图片进行数据绑定,选择工作流和对应颜色,保存刷新查看生成结果。工作流数据绑定要先清空,避免手动输入变量,选工作流时要注意准确。调好第一张图片后复制成三张,根据背景颜色区分,通过连接节点选择对应图片输出。在用户界面不发布也可调试,有预览功能。识别图片特征有误时需在工作流里优化提示词,可考虑使用视频模型。应用界面数据无法直接带到智能体,可尝试左右布局,左边表单右边互动。 在 Coze 工作流创建室内设计师方面:打开 Coze 官网 https://www.coze.cn/home 创建 Bot。图像流分为智能生成、智能编辑、基础编辑三类。Coze 的图像流很像 ComfyUI,但是比 ComfyUI 更普世化,更简单易上手。空间风格化插件有参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等。按照构架配置工作流,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。开始节点对应配置三项内容,然后点击右上角发布,机器人就可以出图。 在产品买点提炼神器强化版方面:智能体功能实现包括卖点提炼模块,通过提问引导用户发掘产品/服务的卖点,若用户无法准确回答则交由大模型帮助回答并生成可能的卖点。卖点修改模块对大模型总结的卖点进行精细化调整,用户可根据满意度选择跳过、修改补充、让大模型补充或重新生成全部内容。内容展示模块将生成的内容利用图像流制作成可保存的图片,制作美观的图片模板,从工作流中传入产品名称、卖点、买点等信息并在图片中展示,将生成的图片链接通过结束节点输出,并在工作流的消息节点展示。
2025-03-06
用哪个ai平台,可以识别图像户型图,给做一个三居改四居的设计方案
目前,市面上还没有专门的 AI 平台能够直接根据图像户型图为您生成三居改四居的设计方案。但是,一些与室内设计相关的软件和平台可能会对您有所帮助,例如酷家乐、三维家等,它们具有一定的户型设计和修改功能,您可以尝试使用这些平台,并结合自己的需求和创意来完成设计方案。
2025-03-06
我现在要对一些很糊的图像进行图像修复,就是把图像变高清,有什么工具吗?
以下是一些可用于图像修复变高清的工具和方法: 1. 图像修复放大流程: 输入原始图像:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复:使用 Iceclear/StableSR 模型,并搭配 Stable SR Upscaler 模型,推理图片噪点以还原图像。提示词应包含想要达到的目的内容,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 图像高清放大:对第一次放大修复后的图像进行二次修复,realisticVision 底膜效果较好。使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型进行二次放大。 2. 星流一站式 AI 设计工具: 右侧生成器的高级模式:与入门模式相比增加了基础模型、图片参考等更多功能。基础模型允许使用更多微调大模型和更多图像控制功能,如高清分辨率修复等。同时,还可以调整放大算法、重绘幅度等参数,以及选择不同的采样器。 3. SD 新手入门图文教程: 文生图最简流程中的一些参数: CFG Scale(提示词相关性):控制图像与提示的匹配程度,一般开到 7 11。 生成批次和每批数量:影响生成图像的组数和数量。 尺寸:推荐使用小尺寸分辨率结合高清修复(Hires fix)。 种子:决定模型生成图片的随机性。 高清修复:通过勾选“Highres.fix”启用,先按指定尺寸生成图片,再通过放大算法扩大分辨率以实现高清大图效果。
2025-03-04
我现在要对一些很糊的图像进行图像修复,有什么好用的工具吗?
以下为您推荐一些用于图像修复的工具和方法: 1. StableSR: 需要使用StabilityAI官方的Stable Diffusion V2.1 512 EMA模型,放入stablediffusionwebui/models/StableDiffusion/文件夹中。 StableSR模块(约400M大小)放入stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 还有一个VQVAE(约750MB大小)放在stablediffusionwebui/models/VAE中。 测试时发现,不同的重绘幅度效果不同,重绘幅度较大时可能会改变人物形象,对于追求最大保真度的老照片修复,重绘方法不太好。 2. Stable Diffusion: 除生成新照片外,可用于修复糊的照片,效果较好。 恢复画质的功能叫“后期处理”,上传图片后选择放大器,修复二次元照片选“RESRGAN 4x+Anime68”,其他实物照片选“RESRGAN 4x+”。 修复真人照片时,放大器选择“无(None)”,并将“GFPGAN强度”参数拉满(1),可修复人脸,但其他部分可能仍较糊。 3. 图像修复放大流程: 分为输入原始图像、修复图像、放大并重绘图像三部分。 图像输入:添加Load Image节点加载图像,不建议上传大分辨率图片,处理时间长。 图像高清修复:Checkpoint大模型使用Iceclear/StableSR,并搭配Stable SR Upscaler模型,提示词包含正向和反向描述。 图像高清放大:用realisticVision底膜,使用提示词反推node提取画面提示词,搭配tile ControlNet提升细节感,用合适的高清放大模型二次放大。
2025-03-04
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
图像生成的提示词
以下是关于图像生成提示词的相关内容: 1. 藏师傅教您用 AI 三步制作任意公司的周边图片: 第一步:将生成的提示词填入{图像描述}位置,将想生成的周边填入{周边描述}部分。例如:“The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate”。参考此内容和风格特点创作类似提示词,然后根据{周边描述}设计配套的右侧面板描述,表达“展示同样的内容(可以是角色、标志等)”的意思。 第二步:将第二步的提示词和 Logo 图片放到 Comfyui 工作流,Lora 需要用到 InContext LoRA 中的 visualidentitydesign 从 https://huggingface.co/alivilab/InContextLoRA/tree/main 下载,工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 相关文件下载: 。 2. “城市狂想”直接上手操作的教程中图片提示词生成: 提供了猫叔之前写的一段提示词的 prompt,例如: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 。 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 。 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 。 为大家直接生成了 1 组共 12 段提示词,可直接使用。注意:提示词在悠船和 MJ 中可直接使用,在其他平台工具请复制后删除包含以后的部分。 以悠船为例,进入悠船页面,点击开始想象按钮,粘贴提示词,回车等待几十秒生成 4 张图片,可选择喜欢的图片进行变化、高清、重塑、扩图等操作。变化会生成 4 张新图片,高清选择直接变化不明显,选择强烈会修改细节,重塑分为细微和强烈两种方式,会展现不同画面类型和内容。
2025-02-21