Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

(二) 性能指标(包括服务性能指标、网络性能指标、云性能指标)

Answer

对比不同大语言模型的性能需要从多个维度进行考量,具体包括:

  1. 理解能力:评估模型对语言的理解程度,涵盖语法、语义、上下文及隐含意义的理解。
  2. 生成质量:检查生成文本的质量,如流畅性、相关性和准确性。
  3. 知识广度和深度:衡量模型对广泛主题的知识掌握情况,以及对特定领域或话题的理解深度。
  4. 泛化能力:测试模型处理未见过任务或数据时的表现,反映其泛化能力。
  5. 鲁棒性:查看模型对错误输入、对抗性输入或模糊指令的应对能力。
  6. 偏见和伦理:评估生成文本是否存在偏见,以及是否遵循伦理标准。
  7. 交互性和适应性:评估在交互环境中的表现,包括对用户反馈的适应性和持续对话能力。
  8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。
  9. 易用性和集成性:评估是否易于集成到不同应用和服务中,以及提供的 API 和工具的易用性。

为了进行有效的比较,可以采用以下方法:

  1. 标准基准测试:使用标准的语言模型评估基准,如 GLUE、SuperGLUE、SQuAD 等,这些基准提供统一的测试环境和评分标准。
  2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。
  3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。
  4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。
  5. 性能指标:使用包括准确率、召回率、F1 分数、BLEU 分数等在内的性能指标来量化比较。
Content generated by AI large model, please carefully verify (powered by aily)

References

问: 如何对比不同大语言模型的性能

对比不同大型语言模型的性能需要考虑多个维度,包括但不限于以下几个方面:1.理解能力:评估模型对语言的理解程度,包括对语法、语义、上下文和隐含意义的理解。2.生成质量:检查模型生成的文本的质量,包括文本的流畅性、相关性和准确性。3.知识广度和深度:评估模型对广泛主题的知识掌握程度,以及它对特定领域或话题的理解深度。4.泛化能力:测试模型在处理未见过的任务或数据时的表现,这反映了模型的泛化能力。5.鲁棒性:检查模型对错误输入、对抗性输入或模糊不清的指令的应对能力。6.偏见和伦理:评估模型生成文本时是否存在偏见,以及模型是否遵循伦理标准。7.交互性和适应性:评估模型在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。8.计算效率和资源消耗:考虑模型的大小、训练和运行所需的计算资源。9.易用性和集成性:评估模型是否易于集成到不同的应用和服务中,以及提供的API和工具的易用性。为了进行有效的比较,可以采用以下方法:标准基准测试:使用标准的语言模型评估基准,如GLUE、SuperGLUE、SQuAD等,这些基准提供了统一的测试环境和评分标准。自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。A/B测试:在实际应用场景中,通过A/B测试比较不同模型的表现。性能指标:使用包括准确率、召回率、F1分数、BLEU分数等在内的性能指标来量化比较。

Others are asking
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12
什么是深度神经网络
深度神经网络是机器学习文献中的一类模型,受到生物神经网络的启发。一般来说,深度神经网络可分为以下几类: 1. 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 2. 循环网络:在其连接图中有定向循环,可能具有复杂动态,训练较难,但更具生物真实性。 深度神经网络具有以下特点和应用: 1. 可以计算一系列改变样本相似性的变换,几乎能应用于任何从输入到输出空间复杂映射的机器学习问题。 2. 能够用于模拟大脑工作方式、了解并行计算风格以及解决实际问题。 在其发展过程中,如感知机的出现推动了机器学习的问世,展示了其对简单形状分类的学习能力。神经网络本质上是多层感知机,早期只有输出层,而典型应用如分辨手写数字。 同时,在深度神经网络的研究中,还涉及到如深度玻尔兹曼机、受限玻尔兹曼机、深度信念网络等相关内容。但使用反向传播等方法存在需要有标签的训练数据、学习时间不理想、可能陷入局部最小等问题。
2025-02-03
网络上有关于AI知识的授课,请问标价一般在多少范围内合适
网络上关于 AI 知识的授课,比如“野菩萨”的课程,其内容丰富多样,包括: 预习周课程:涵盖 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:包含 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 该课程标价情况如下: 冠军奖励:4980 课程一份。 亚军奖励:3980 课程一份。 季军奖励:1980 课程一份。 入围奖励:598 野神殿门票一张。 同时,如果想要免费获得这门课程,可以参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-01-31
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
想写网络小说如何找到合适的AI工具
如果您想写网络小说并找到合适的 AI 工具,以下是一些建议和相关信息: 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 相关工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 关于用 AI 写出更好文字的方法: 1. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。直接点出这种东西常常出现在什么地方,是什么。比如,要写的小说可能是“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。 2. 对于短剧剧本创作这类困难任务,可以让模型写一种特殊格式的网络小说,剩下的尽量显式地描述想要的东西的特征。 3. 往 prompt 里面塞例子,这是一个暴力但是管用且流行的办法。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-22
我做餐饮服务相关的投标文件,能用到哪些ai工具或平台能让我提高工作效率
以下是一些在制作餐饮服务投标文件时可能提高工作效率的 AI 工具和平台: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,声称可以帮助企业撰写更强的提案,提高中标率。能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。 2. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。可用于制作营销视频、产品演示等。 3. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。适合制作营销视频和虚拟主持人等。 4. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等。提供多种语气和风格选择,写作质量较高。 5. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。有免费和付费两种计划。 6. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。提供多种语气和行业定制选项。 您还可以查看 WaytoAGI 网站(https://www.waytoagi.com/sites?tag=8)获取更多相关信息。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-12
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
AI 如何服务供应链管理
AI 在供应链管理方面有以下应用: 1. 预测性维护:通过分析设备运行数据预测机器故障,帮助工厂避免停机,提高供应链的稳定性。 2. 质量控制:检测产品缺陷,提高产品质量,减少因质量问题导致的供应链中断。 3. 优化供应链:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率,降低成本。 4. 工具支持:如利用保证技术和技术标准等工具,支持供应链风险管理,建立对系统的合理信任,使用户相信关键的 AI 相关风险已在整个供应链中得到识别、解决和缓解。 5. 责任评估:持续评估法律责任在 AI 中的分布是否有效和公平,特别是对于基础模型,关注其在生命周期问责方面可能带来的潜在挑战。通过集中评估 AI 问责是否有足够的措施,评估是否需要对整个经济和 AI 生命周期中的 AI 责任进行进一步干预。
2025-02-11
我想知道如何在服务器做deepseek本地部署,作为本地知识专家
以下是在服务器进行 DeepSeek 本地部署的相关步骤: 1. 安装 AnythingLLM 软件:其安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 2. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话。 3. 实现联网版的 DeepSeek R1 大模型的核心路径:通过工作流 + DeepSeek R1 大模型。 4. 拥有扣子专业版账号:如果是普通账号,请自行升级或注册专业号后使用。 5. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 6. 创建智能体:点击创建,先完成一个智能体的创建。 需要注意的是,看十遍不如实操一遍,实操十遍不如分享一遍,如果您对 AI Agent 技术感兴趣,可以联系相关人员或者加免费知识星球(备注 AGI 知识库)。
2025-02-11
为什么deepseek一直提示服务器繁忙
DeepSeek 一直提示服务器繁忙,可能是由于服务器资源紧张。以下为您提供一些可能的解决办法: 1. 您可以尝试使用以下搜索工具: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 另外,需要注意的是,DeepSeek 已暂停 API 充值服务,服务器资源紧张,官方宣布暂停 API 充值,已充值金额可继续使用。DeepSeekchat 模型优惠期至 2025 年 2 月 8 日 24:00,之后按每百万输入 tokens 2 元,每百万输出 tokens 8 元计费。Deepseekreasoner 模型上线即按每百万输入 tokens 4 元,每百万输出 tokens 16 元计费。详情可参考:
2025-02-10
deepseek服务器繁忙
如果 DeepSeek 服务器繁忙,您可以尝试以下替代方案: 1. 秘塔搜索:https://metaso.cn 2. 360 纳米 AI 搜索:https://www.n.cn/ 3. 硅基流动:https://cloud.siliconflow.cn/i/P677W6Hz 4. 字节跳动火山引擎:https://console.volcengine.com/ark/region:ark+cnbeijing/experience 5. 百度云千帆:https://console.bce.baidu.com/qianfan/modelcenter/model/buildIn/list 6. 英伟达 NIM:https://build.nvidia.com/deepseekai/deepseekr1 7. Groq:https://groq.com/ 8. Fireworks:https://fireworks.ai/models/fireworks/deepseekr1 9. Chutes:https://chutes.ai/app/chute/ 10. Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground(需要魔法) 11. POE:https://poe.com/DeepSeekR1(需要魔法) 12. Cursor:https://cursor.sh/(需要魔法) 13. Monica:https://monica.im/invitation?c=ACZ7WJJ9(需要魔法) 14. Lambda:https://lambdalabs.com/(需要魔法) 15. Cerebras:https://cerebras.ai(需要魔法) 16. Perplexity:https://www.perplexity.ai(需要魔法) 17. 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1
2025-02-10
大模型涉及到芯片包括哪些
大模型涉及到的芯片包括以下几种: 英伟达的Blackwell超级芯片:如GB200 NVL72,将36个Grace CPU和72个Blackwell GPU集成到一个液冷机柜中,可实现总计720 petaflops的AI训练性能,或是1,440 petaflops(1.4 exaflops)的推理性能。 英伟达的DGX B200:包括8个Blackwell GPU和2个第五代Intel Xeon处理器,包含FP4精度功能,提供高达144 petaflops的AI性能、1.4TB的GPU内存和64TB/s的内存带宽。 同时需要注意的是,在数据、算力、算法三要素中,算力是基础,也是大模型竞争力,但国产芯片在软件适配度、稳定性方面仍显不足。国产芯片与英伟达显卡之间的解耦能力较弱,未来可能会逐步用国产芯片去做百亿甚至更大体量的模型训练,但算力的累积依然是重要挑战。目前,AI大模型算力主要在训练、推理两个部分,其中成本最高部分是前期的模型训练,大部分采用智能计算中心、自费买英伟达A800/H800显卡组成服务器运行、或者是用价格更为实惠的服务器云来训练。而推理部分算力需求较少、价格不高,大部分模型应用都需要同时建立公有云、私有云两种混合模式,而且需要购买一定的云服务,以更好做大模型应用。
2025-02-11
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11
你是一个专业的AI工具测评师,用过市场上的所有AI工具,请制作一个PPT,介绍一个如何使用AI进行办公提效,并根据你的经验,对使用过的AI工具进行分类对比和测评,对比结果以表格形式呈现,需要包括是否收费,国内是否可用,主要面向对象,优点和缺点,突出功能等
以下是为您制作的关于如何使用 AI 进行办公提效以及 AI 工具分类对比和测评的 PPT 内容: 幻灯片 1:封面 标题:AI 助力办公提效及工具测评 幻灯片 2:目录 AI 在办公中的应用场景 常用 AI 办公工具分类对比 各工具的详细测评 幻灯片 3:AI 在办公中的应用场景 辅助文档处理 自动生成会议记录 办公文件分类管理 语言学习纠错 幻灯片 4:常用 AI 办公工具分类对比(表格形式) |工具名称|是否收费|国内是否可用|主要面向对象|优点|缺点|突出功能| |||||||| |平安好医生 APP|部分功能收费|是|医疗工作者和患者|辅助医生诊断,提高准确性|可能存在误判|辅助疾病诊断| |腾讯会议|部分高级功能收费|是|企业和个人|自动生成会议记录,方便回顾|语音识别准确性有待提高|会议记录生成| |字体管家 APP|部分字体收费|是|设计和文字工作者|生成多种书法字体|字体版权问题|书法字体生成| |醒图 APP|部分功能收费|是|摄影爱好者|提供构图建议,提升照片质量|对复杂场景的建议有限|摄影构图建议| |游戏内商城推荐功能|部分游戏收费|是|游戏玩家|根据需求推荐道具|推荐的精准度因人而异|游戏道具推荐| |彩云天气分时预报|部分功能收费|是|出行人群|提供精准分时天气预报|天气变化的不确定性|分时天气预报| |医渡云病历分析系统|收费|是|医疗机构|分析病历辅助诊断|数据安全性|病历分析| |讯飞听见会议总结功能|部分功能收费|是|企业和个人|自动总结会议发言内容|对复杂语言理解有限|会议发言总结| |书法临摹软件|部分功能收费|是|书法爱好者|提供临摹指导和评价|对不同书法风格的适应性|临摹辅助| |下厨房口味调整功能|部分功能收费|是|烹饪爱好者|根据反馈调整菜谱口味|口味调整的局限性|菜谱口味调整| |英语流利说纠错功能|部分课程收费|是|语言学习者|帮助纠正错误|对口语表达的纠错有限|语言学习纠错| |豆瓣电影剧情分析工具|免费|是|电影爱好者|提供剧情深度解读|分析的主观性|剧情分析| |腾讯文档分类功能|部分高级功能收费|是|企业和个人|自动分类办公文件|分类准确性依赖数据|文件分类| |美丽修行定制方案功能|部分功能收费|是|美容护肤人群|定制个性化护肤方案|方案的普适性|护肤方案定制| 幻灯片 5:总结 强调 AI 在办公领域的重要性和潜力 鼓励根据实际需求选择合适的 AI 工具提升办公效率 以上 PPT 内容仅供参考,您可以根据具体需求进行修改和完善。
2025-02-10
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21