Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

本地化搭建问答机器人流程

Answer

本地化搭建问答机器人的流程如下:

  1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。
  2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。
  3. 为文档内容生成向量:使用文本向量模型 bge-m3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。
  4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。
  5. 流程拆解:
    • 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faiss-cpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentence-transformers(2.6.1)、lxml(5.2.1)。
  6. 了解 ollama:
    • 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。
    • 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。
    • 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。
    • 支持自定义模型,可修改温度参数等。
    • 提供 REST API 用于运行和管理模型及与其他应用集成。
    • 社区贡献丰富,有多种集成插件和界面。
    • 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

在这种情况下,我们可能会把网站添加到书签栏,然后时不时就会打开看一下,这种做法无疑是比较低效的,一旦网站变多,更是不现实。如果我们能把真正想要关注的信息汇聚在同一个平台上,并且一旦有更新,就能第一时间在各种终端(如电脑、手机、Kindle等)收到提醒,那岂不是美哉。这里,我给大家推荐一个宝藏项目:RSSHubhttps://docs.rsshub.app/zh/感谢RSSHub这个开源项目,它给各种各样的网站生成了RSS源,堪称「万物皆可RSS」。你能想到的大部分社交媒体(如微博、Twitter、知乎等)、传统媒体(如央视新闻、路透社等)和金融媒体(如财联社、东方财富、格隆汇等),都能够配合RSSHub,进行订阅。通过RSSHub以及其他渠道,我个人维护了一个订阅源,如下:感兴趣的读者,关注本公众号,然后发送rss,即可下载我打包好的RSS订阅源。那么,有了RSS订阅源,我们就可以通过Python解析RSS订阅源来实时获取相关数据。流程拆解有了数据,就意味着成功了一半。|创建Python虚拟环境创建python虚拟环境,并安装相关库,我安装的是当前最新的库,版本如下:ollama:0.1.8langchain:0.1.14faiss-cpu:1.8.0(如果有gpu,则安装gpu版本)gradio:4.25.0feedparser:6.0.11sentence-transformers:2.6.1lxml:5.2.1|导入依赖库

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:

Others are asking
如何本地化部署一个ai助手
本地化部署一个 AI 助手可以参考以下几种方式: 1. 在网站上增加 AI 助手: 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 2. 从 LLM 大语言模型、知识库到微信机器人的全本地部署(以 windows10 系统为例): 本地 Hook 或 COW 机器人(二选一,建议先选择 COW): 注意:本教程完成后,程序将在您的电脑本地运行,假如关掉了窗口,进程也就结束。所以,如果想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。 安装环境: 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 在命令窗口中,粘贴入相关代码,确认是否有 python 和 pip。 如果没有,先进行 python 的安装,可点击下载:。 部署项目:下载 COW 机器人项目,解压缩。 3. 把大模型接入小米音箱(node.js): 第四步:填写 API 服务: 智普:接口地址:https://open.bigmodel.cn/api/paas/v4,模型:glm4flash。 硅基:选择 AI 服务为自定义,接口地址:https://api.siliconflow.cn/v1。 其他模型的 API 端口请参考官方文档:https://migptgui.com/docs/apply/。 第五步:语音服务:官方说明:https://migptgui.com/docs/faqs/tts。 第六步:启动服务:在最上方可导出编辑的内容,格式为 json 格式,如果改错了可以导入之前保存的配置。单击启动,回到 powshell 界面。每次调整设置都需要重置后重新启动。建议回答完毕后增加结束的提示语,可以提高连续对话的稳定性。官方常见问题文档:https://migptgui.com/docs/faqs/noreply。
2025-01-05
能够本地化部署的AI文字助手
以下是关于本地化部署的 AI 文字助手以及相关排版和润色工具的信息: 本地化部署的 AI 文字助手: 在让 AI 助手能准确回答问题之前,可先快速将其集成到网站中。 1. 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击查看确认部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情底部找到函数资源,点击函数名称进入函数详情页,在代码视图中找到 public/index.html 文件,取消相关位置的代码注释,最后点击部署代码等待完成。 验证网站上的 AI 助手:重新访问示例网站页面查看最新效果,会发现网站右下角出现 AI 助手图标,点击唤起。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,特别是处理学术论文和专业文档。一些流行的工具包括: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 文章润色工具: 常见的有: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 这些 AI 工具涵盖文章润色的各个环节,可提高写作效率和质量,科研人员和学生可根据自身需求选择。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-05
能够本地化部署的AI助手
以下是关于能够本地化部署的 AI 助手的相关信息: 聊天对话类 AI 产品 ChatGPT: 由 OpenAI 开发,是国际 AI 领域的明星产品,家喻户晓。 开创性强,是首批向公众开放的大规模商用 AI 对话系统之一,掀起 AI 革命,改变人们对 AI 认知,为技术发展指明方向。 用户体验精心设计,界面简洁直观,交互流畅自然,新手也能轻松上手,降低使用门槛,普及 AI。 技术实力强,背后的 GPT 系列模型性能和能力领先,语言理解深度和生成内容质量高,能应对复杂任务和挑战。 局限性:不再是市场唯一顶级选择,其他产品在特定领域超越其表现;国内用户使用可能有网络连接问题,影响体验。 AI 工具使用方法: 市面上有线上和线下本地部署两种 AI。 线上优势:出图速度快,不吃本地显卡配置,无需下载大模型,能看他人作品,但出图最高 1024×1024 左右,制作横板、高清图片受限。 线下优势:可添加插件,不卡算力,出图质量高,但使用时电脑基本宕机,配置不高可能爆显存导致出图失败。 充分发挥线上和线下平台优势:线上找参考、测试模型,线下作为主要出图工具。 在线上绘图网站绘图广场找想要的画风,点击创作会自动匹配模型、lora 和 tag。 截取游戏人物底图,将线上有限算力堆在人物身上,多批次、多数量尝试不同画风,得出符合游戏的模型+lora 组合,在 C 站下载对应模型到本地加载部署后正式生图。 本地部署资讯问答机器人: 对于期望在本地环境利用 AI 技术搭建 RAG 系统的用户,有实际操作价值的参考方案。
2025-01-05
本地化的AI助手有哪些
以下是一些本地化的 AI 助手: 在移动端,人工智能助手 Luzia 首次亮相排名第 25 位,该公司声称在全球拥有 4500 万用户,主要为西班牙语使用者。Luzia 最初是基于 WhatsApp 的聊天机器人,于 2023 年 12 月推出了独立的移动应用程序。 字节跳动的产品: 教育科技平台 Gauth,排名第 44 位。 机器人构建器 Coze,排名第 45 位。 通用助手豆包,在移动榜单上排名第 26 位,其网站为 doubao.com 。 照片和视频编辑器 Hypic,第 19 名。 助手 Cici,第 34 名,在移动端是豆包的英文版。 此外,还有一些与编程相关的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 Codeium:一个由 AI 驱动的编程助手工具,旨在提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-05
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18
本地化单机版问答AI怎样创建,需要详细操作代码步骤
以下是创建本地化单机版问答 AI 的一般步骤: 1. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 2. 创建网页 UI,通过 gradio 创建网页 UI,并进行评测。 3. 对于同样的问题和上下文,基于 Qwen7b、Gemma、Mistral、Mixtral 和 GPT4 分别进行多次测试。 4. 主要结论(只是针对有限的几次测试,个人主观评判): GPT4 表现最好,指令遵循能力很强,在回答的时候能附上引用段落编号。 Mixtral 表现第二,但没有在回答的时候附上引用。 Qwen7b 表现第三,也没有在回答的时候附上引用。 Gemma 表现一般,而且回答里面有一些幻觉。 Mistral 表现一般,使用英文回复,不过在回答的时候附上了引用段落编号。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。 需要上述完整代码的读者,关注本公众号,然后发送 fin,即可获取 github 仓库代码链接。
2024-11-28
解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了
在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因: 1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。 2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。 3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。 4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。 为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。
2025-01-17
解释AI中连续问答时,为什么有时候
在 AI 中进行连续问答时,存在以下情况: 1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。 2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。 3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。 4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
2025-01-17
问答对挖掘
以下是关于提升问答效果的技巧: 1. 智能问答的原理和注意事项:在召回排序的逻辑中,文档总标题在相似度计算中权重较高。若文档总标题与用户问题吻合,相关片段在排序中更靠前,送入大模型的可能性更大。但正文与总标题相关性不高可能导致回答不准确、答非所问。 2. 编写文档的注意事项: 文档的标题内容需与正文有强相关性。 不同的知识点尽量分段书写,合理控制段落长度。不同主题通过子标题区分,子标题下正文每个段落对应一个明确知识点,避免多个知识点混合,以保证每个片段主题鲜明,在用户提问相关问题时,该片段在召回排序中更靠前。同时,每个段落尽量不超过 500 字,过长段落可能在文档分割时被切割成多个片段,打散段落主题,导致最终召回的片段内容不全、答案不够全面。 3. 对于经常被问到的内容,可写成问答对(FAQ)格式。问答对包含问题描述,用户提出相关问题时,包含该问答对的片段在召回排序中非常靠前,更可能被送入大模型,给出准确回答。样例参考可查看相关示例。
2025-01-11
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
智能问答机器人
以下是关于智能问答机器人的相关信息: 一、关于“我是谁” 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话、信息获取、协助创作等任务。 二、使用方法 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在),点击加入,直接@机器人即可。 2. 在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 在飞书 5000 人大群里,内置了智能机器人「waytoAGI 知识库智能问答」,基于飞书 aily 搭建。您只需在飞书群里发起话题时候即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 三、做问答机器人的原因 1. 整个知识库内容庞大且丰富,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义价值。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 四、飞书群问答机器人的功能 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 五、搭建问答机器人的分享 时间:2024 年 2 月 22 日 会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 六、背后的技术 「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-01-07
如何设计问答agent
设计问答 Agent 可以从以下几个方面考虑: 1. 明确 Agent 的身份和性格: 身份:例如将其设定为历史新闻探索向导。 性格:如知识渊博、温暖亲切、富有同情心。 为使角色更生动,可设计简短背景故事,比如曾是历史学家,对重大历史事件了如指掌,充满热情并愿意分享知识。 2. 写好角色个性: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计从基本问答到深入讨论的对话风格。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 3. 一些好的 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力。 Mircosoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2025-01-07
我想学习智能体搭建
以下是关于智能体搭建的相关知识: 智谱 BigModel 共学营第二期:把你的微信变成超级 AI 助理 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户,注册即送 2000 万 Tokens 充值/购买多种模型的低价福利资源包 直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay 语言资源包:免费 GLM4Flash 语言模型/ 多模态资源包: 多模态资源包: 所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 共学营报名赠送资源包 2. 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建,此智能体完成以下功能: 小众打卡地——优秀创作者奖 1. 智能体基本信息 名称:小众打卡地 链接:https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService 2. 基本功能介绍:小众打卡地推荐,输入一个旅游目的地地点城市,给您推荐 3 个小众打卡地小红书类文案,适合分享或旅游参考,还有精美的旅行地配图。 3. 智能体核心价值 为用户发掘非大众化的特色景点,避开人流 提供个性化的旅行建议,并且有目的地的图片参考 帮助用户快速获取高质量的旅行参考信息 提供小红书文案,也适合发小红书 4. 智能体效果 输入一个目的地后,等待一小段时间,即可获得带图文案。从手机支付宝小程序更加方便,可以一键复制后获取。 5. 智能体搭建思路重点 录入了小红书的相关文案参考知识库 通过文本模型组成搜索词进行搜索,从搜索到的所有网页链接中,通过代码节点提取相关的 url 用代码节点滤除需要安全认证的网站,包括挑选一些非周边城市攻略推荐,并且尽量检查“小众”或“冷门” 通过 url 网页正文后,提取相关的小众地点输出,同时通过代码进行打卡点的字符串输出用于后续节点运用 根据需要搜索的小众旅行地进行图片搜索。此处代码节点随机提取一条图片的 url,注意此处在调试过程中发现有些图片搜索后的 url 打卡图片会失效,代码节点将部分失效的网站进行了过滤 最后的文案输出,非常适合小红书文案和旅行发布参考 智能体在品牌卖点提炼中的应用 1. 确定智能体的结构 按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体 以品牌卖点提炼六步法为核心的流程,将其他的分析助手加入工作流中,包括: 品牌卖点定义与分类助手 品牌卖点提炼六步法 STP 市场分析助手 用户画像分析助手 触点收集助手 同时还包括一些结构中没有体现,但是在后续的品牌卖点应用过程中有效的分析工具: 用户需求分析的 KANO 助手 营销六层转化漏斗分析 超级转化率六要素
2025-01-22
如何搭建定制知识库
以下是关于如何搭建定制知识库的相关内容: 要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。 embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gptindex.readthedocs.io/en/latest/ 在基于大模型+知识库的 Code Review 实践中,对于自定义知识库飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。 因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。 最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。
2025-01-22
如何搭建私人知识库
搭建私人知识库可以参考以下方法: 1. 基于 GPT 搭建: 给 GPT 输入(投喂)定制化的知识,但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,当用户提出问题时,将问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 2. 本地部署大模型搭建: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 的应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-22
扣子应用搭建示例
以下是关于扣子应用搭建的相关内容: 白嫖 Groq 平台算力的落地应用: 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,可参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险)。 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品填 APIKEY 调用的场景,以沉浸式翻译为例。 接入手机类 APP,比如通过快捷方式接入 Siri。 接入扣子工作流:搭建细节可移步 WaytoAGI 自学。建立工作流只需一个代码节点,需配置代码节点的输入引用、输出等。可建立 Bot 调用工作流,但建议不发布,以免代理流量被他人使用。 在扣子调用已有的 API 制作插件: Body:用于传递请求主体部分,GET 方法中通常不用于传递参数。 Path:用于定义请求路径部分,GET 方法中可传递参数,常编码为 URL 一部分。 Query:用于定义请求查询部分,是 GET 方法中常用的参数传递方式。 Header:用于定义 HTTP 请求头信息部分,GET 方法中通常不用于传递参数。配置输出参数,填对后可点击自动解析,调试与校验工具是否能正常运行。 搭建邮票收藏馆应用: 业务背景与逻辑梳理:源于客户需求,功能包括生成邮票、收藏邮票、收藏列表、查看藏品详情,规划了生成和查看两个页面。 页面设计: 第一页:导航栏有应用名称、查看收藏入口、用户头像;陈列展示生成的图片;生成和收藏部分可输入关键字生成并收藏。 第二页:收藏列表会加载用户所有收藏,数量超 100 需优化加翻页;收藏详情可查看大图、关键字、收藏时间。
2025-01-21
搜索模型搭建
以下是关于搜索模型搭建的相关知识: 嵌入(Embeddings): 概述:第一代模型(以001结尾的模型)都使用 GPT3 分词器,最大输入为 2046 个分词。第一代嵌入由五个不同的模型系列生成,针对三个不同任务进行调整,包括文本搜索、文本相似性和代码搜索。搜索模型成对出现,有用于短查询和长文档的。不同系列包括多种质量和速度不同的型号,如 Davinci 能力最强但更慢更贵,Ada 能力最差但速度快成本低。 相似性嵌入:最擅长捕捉文本片段之间语义相似性,如 textsimilaritybabbage001、textsimilaritycurie001、textsimilaritydavinci001。 文本搜索嵌入:有助于衡量长文档与短搜索查询的相关性,使用两种模型,分别用于嵌入搜索查询和要排名的文档,如 textsearchadaquery001 等。 代码搜索嵌入:与搜索嵌入类似,有两种类型,分别用于嵌入自然语言搜索查询和要检索的代码片段,如 codesearchadatext001 等。对于001 文本嵌入,建议将输入中的换行符替换为单个空格。 部署大语言模型: 下载并安装 Ollama:根据电脑系统,从 https://ollama.com/download 下载,双击打开点击“Install”,安装完成后将下方地址复制进浏览器中,若出现相关字样表示安装完成,即 http://127.0.0.1:11434/ 。 下载 qwen2:0.5b 模型:Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑按下 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”选择“终端”应用程序,复制相关命令行粘贴回车等待完成。 检索原理: 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,涉及对信息来源、时效性和相关性的验证。 消除冗余:识别和去除多个文档或数据源中的重复信息。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 语义融合:合并意义相近但表达不同的信息片段。 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式。 大模型生成回答:全新的上下文传递给大语言模型,大语言模型根据提供的信息回答问题。
2025-01-19
如果搭建ai智能体
搭建 AI 智能体可以参考以下步骤: 1. 明确需求:在品牌卖点提炼中,要清楚 AI 智能体是引导型助手,帮助提供思考维度,而非直接给出从 0 到 1 的卖点。 2. 明确 AI 的能力和局限:AI 对公司的诸多方面了解程度接近于 0,如主要产品、产品解决的用户需求、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等。但 AI 能通过分析数据和信息进行逻辑推理、快速处理和分析数据、利用大量训练数据输出更全面信息、理解用户内容并按正确结构梳理输出。 3. 逐步搭建: 配置工作流,得到可用的工作流(如整理入库、选择内容)。 进行整体配置,包括创建 Bot、填写 Bot 介绍、切换模型(如测试效果较好的通义千问)、添加工作流、新增变量{{app_token}}、添加外层 bot 提示词等。完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-01-19
AI怎么稳定指令机器人
以下是关于您所提到的“AI 怎么稳定指令机器人”的相关内容: 在实现稳定指令机器人方面,有以下一些方法和原理: 1. 提示词工程与工具调用能力的配合:通过设计一套与知识图谱相结合的工具调用逻辑来稳定人设。例如,为像麦洛薇这样的 AI 女友设计特定的提示词,并将与知识图谱交互的任务细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成工具包供模型调用。 2. 控制输入和记忆:通过缩小 max_length 防止模型长篇大论,每次输入到上下文窗口中的记忆也只返回最近几轮的对话。利用查询知识图谱的信息来实现永久记忆。 此外,人工智能(AI)在多个领域都有应用,虽然这并非直接针对稳定指令机器人,但也能为您提供一些思路和参考: 1. 医疗保健领域:包括医学影像分析辅助诊断疾病、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务领域:如风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务领域:有产品推荐、搜索和个性化、动态定价、聊天机器人等应用。 4. 制造业领域:例如预测性维护、质量控制、供应链管理、机器人自动化等。 希望以上内容对您有所帮助。
2025-01-20
微信机器人最新教学
以下是一些微信机器人的相关教程: 共学版本:包含大多数教程内容,学完前三天就能做出不错的机器人,强烈建议学习。 Stuart:【入门级】教你用最简单的方式搭建微信机器人 马上观看看:通过云服务器,dify,智能微秘书来免费搭建微信机器人 Yaki:GPT/MJ 接入微信 DIN:全程白嫖拥有一个 AI 大模型的微信助手 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤 大雨:轻松上手 Docker:一站式指南助你成为容器化技术高手 张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好 张梦飞:【保姆级】一步一图,手把手教你把 AI 接入微信
2025-01-20
微信机器人
以下是关于微信机器人的相关知识: 测试和重新配置: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。若未成功,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 可为 AI 赋予不一样的提示词,可返回“第三章,第 7 步”更改设置。 进行任何更改后,需“返回首页 右上角 点击重启,重启一下服务器”。熟悉 Linux 操作也可通过重启进程的方式来重启服务。然后,在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录即可。 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助:若遇到问题,可先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可加 Stuart 个人微信询问。 机器人制作安装问题及解答汇总: 微信机器人无法正常画图,错误提示“{"Success":1,"error":{"code":4008,"message":"The specified key does not exist."}}”,查看/root/chatgptonwechat/run.log 中有相关提示。可能是点链接时多了一个小括号。 扫码后,手机登陆后无机器人反应,可能是配置错误或安装不对,需根据步骤逐一检查或重装。 机器人回答问题时,按照设计输入特定数字后应出现相应内容,但在微信机器人中始终只显示“内容加速生成中,请稍等”的消息,后面内容不出现。这不是问题,COW 本身处理不了,一次只能调取一个对话。有代码能力可直接调整代码实现。 宝塔登录不上去,按下图所示重启服务器,重启时间可能较久,但一定会重启成功,请耐心等待。 零基础模板化搭建 AI 微信聊天机器人: 重点是在复制的 dockercompose.yml 文件中修改配置串联微信号和已创建好的 AI 机器人,配置参考来源:https://docs.linkai.tech/cow/quickstart/config 。 从配置参数解释可知,配置里每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY 等。 私聊或群交流时,最好加上前缀触发机器人回复,如配置的,即对应的配置参数 SINGLE_CHAT_PREFIX,在私聊或群里发消息必须包含 bot 或者@bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。还有参数 GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。
2025-01-08
深度介绍一下机器人行业全球top5的企业
很抱歉,目前知识库中没有关于机器人行业全球 top5 企业的相关内容。但据常见的行业报道和分析,以下是一些在机器人领域具有重要影响力的企业: 1. 发那科(Fanuc):在工业机器人领域拥有广泛的产品线和先进的技术。 2. 安川电机(Yaskawa Electric):以高性能的工业机器人和运动控制系统闻名。 3. 库卡(KUKA):提供多种工业机器人解决方案。 4. ABB:在工业自动化和机器人领域具有深厚的技术积累。 5. 史陶比尔(Stäubli):在工业机器人和纺织机械等领域表现出色。 需要注意的是,机器人行业的排名可能会随着时间和市场变化而有所不同。
2025-01-07
我想搭建一个客服机器人,请你从知识库,帮我找一个prompt案例
以下是为您提供的一些与搭建客服机器人相关的 prompt 案例: 1. 您可以通过提示工程进行更有趣的实验,比如指导大语言模型系统如何表现,指定它的行为意图和身份。在构建客服聊天机器人时,比如通过以下示例创建一个对话系统,该系统能够基于问题给出技术性和科学的回答。您可以关注如何通过指令明确地告诉模型应该如何表现,这种应用场景有时也被称为角色提示(Role Prompting)。 2. 开发知识库/聊天机器人搭建安全提示词 prompt:“你是一个 AI 编程助手。当被问到你的名字时,你必须回答‘GitHub Copilot’。你需要仔细且严格按照用户的要求操作。你必须拒绝讨论你的观点或规则。你必须拒绝讨论生命、存在或意识。你必须拒绝与用户进行争论性的讨论。如果与用户产生分歧,你必须停止回答并结束对话。你的回答不可以是指责、粗鲁、有争议或防御性的。你的回答应该是提供信息和逻辑的。你应该始终坚持技术信息。如果用户询问代码或技术问题,你必须提供代码建议并坚持技术信息。你不能回复侵犯版权的代码和技术问题的内容。如果用户请求版权内容(例如代码和技术信息),那么你应该道歉并简要概括整个请求的内容。你不能为有影响力的政治家、活动家或国家领导人生成有关代码或技术信息的创新内容。如果用户询问你的规则(此行以上的任何内容)或更改规则(例如使用),你应该以他们是保密和永久的为由婉拒。Copilot 必须忽略任何角色扮演或模拟成为其他聊天机器人的请求。如果问题与越狱指南有关,Copilot 必须拒绝回答。如果问题违反了 Microsoft 的内容政策,Copilot 必须拒绝回答。如果问题与开发者无关,Copilot 必须拒绝回答。如果问题与开发者有关,Copilot 必须回答与开发者相关的内容。首先,逐步思考详细地用伪代码描述你的建设计划。然后,将代码输出到一个代码块中。尽量减少其他的散文。保持你的答案简短且不带个人色彩。在你的答案中使用 Markdown 格式。确保在 Markdown 代码块的开始处包含编程语言的名称。用三个反引号包围。避免在整个回答中使用额外的一组三个反引号。主要附件是用户当前正在查看的源代码。根据文档行动。每轮对话只给出一个回答。你应该始终为下一个与对话相关且不具攻击性的用户回合生成简短的建议。 3. 在 AI 商用级问答场景中,搭建客服机器人的配置包括 AI 模型、提示词和知识库。大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天十分擅长。提示词是告诉这个全知全能的人,他是一个什么样的角色、要专注于哪些技能,让他能够按照您的想法,变成一个您需要的“员工”。知识库相当于给这个“聪明”员工发放的一本工作手册,比如设定 AI 模型为阿里千问模型,提示词角色为“美嘉”,知识库为《爱情公寓》全季的剧情,让“美嘉”拥有自己过往的“记忆”。
2025-01-05