Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

扣子应用搭建示例

Answer

以下是关于扣子应用搭建的相关内容:

  • 白嫖 Groq 平台算力的落地应用:
    • 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,可参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险)。
    • 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品填 API-KEY 调用的场景,以沉浸式翻译为例。
    • 接入手机类 APP,比如通过快捷方式接入 Siri。
    • 接入扣子工作流:搭建细节可移步 WaytoAGI 自学。建立工作流只需一个代码节点,需配置代码节点的输入引用、输出等。可建立 Bot 调用工作流,但建议不发布,以免代理流量被他人使用。
  • 在扣子调用已有的 API 制作插件:
    • Body:用于传递请求主体部分,GET 方法中通常不用于传递参数。
    • Path:用于定义请求路径部分,GET 方法中可传递参数,常编码为 URL 一部分。
    • Query:用于定义请求查询部分,是 GET 方法中常用的参数传递方式。
    • Header:用于定义 HTTP 请求头信息部分,GET 方法中通常不用于传递参数。配置输出参数,填对后可点击自动解析,调试与校验工具是否能正常运行。
  • 搭建邮票收藏馆应用:
    • 业务背景与逻辑梳理:源于客户需求,功能包括生成邮票、收藏邮票、收藏列表、查看藏品详情,规划了生成和查看两个页面。
    • 页面设计:
      • 第一页:导航栏有应用名称、查看收藏入口、用户头像;陈列展示生成的图片;生成和收藏部分可输入关键字生成并收藏。
      • 第二页:收藏列表会加载用户所有收藏,数量超 100 需优化加翻页;收藏详情可查看大图、关键字、收藏时间。
Content generated by AI large model, please carefully verify (powered by aily)

References

【保姆级教程】白嫖Groq平台算力(无需魔法,写在扣子收费前)

此时我们有了代理服务器,有了API-KEY,那么如何来进行落地使用呢?举三个例子:1.通过扣子工作流,用代码模块进行HTTP访问,实现0 token脱离扣子模型来使用Groq作为LLM,而且可以参考梦飞大佬教程将扣子接入微信机器人[【共学最全版本】微信机器人跟学教程](https://waytoagi.feishu.cn/wiki/NB3nwtUC0iDLYxkIkSYc0WRznGg)(有微信封号风险)2.由于Groq的API与OpenAI的API几乎兼容,可以适配到任何APP产品可以用来填API-KEY调用的场景,此处用沉浸式翻译举例(如果还不知道沉浸式翻译这个超级好用的网页翻译工具的,请访问https://immersivetranslate.com/自行安装)3.接入手机类APP,比如通过快捷方式接入Siri(此处卖个关子,留着7-28线下切磋赚积分,希望线下小伙伴来找我)[heading3]3.3.1接入扣子工作流[content]1.扣子工作流的搭建细节本篇不详细叙述,请移步WaytoAGI自学。2.建立工作流,只需要一个代码节点,如下:1.Copy以下代码进入代码节点,其中代码节点的输入引用请自行配置为开始节点的用户输入,输出改为“output”,格式为“string”2.测试工作流,保证代码块有正常输出(可以看到此处消耗0 Tokens,白嫖算力成功,在扣子即将收费之际,后续可能可以派上大用处,代替工作流LLM节点)1.可以建立一个Bot,来仅仅调用该工作流,建议不要发布,否则你的Deno代理流量可能被其他人用。1.其他就可以自行发挥了,接入微信什么的。。。此处省略

如何在扣子调用已有的 API 制作插件

1.Body:用于传递请求的主体部分,可以是JSON、XML或其他类型的数据。在GET方法中,通常不使用Body来传递参数,因为GET方法的URL中已经包含了所有必要的参数。2.Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列的段落(如“/users/{username}”)。在GET方法中,Path可以用来传递参数,但通常会将其编码为URL的一部分,而不是单独传递。3.Query:用于定义请求的查询部分,通常以“?”开头,后面跟着一系列的键值对(如“?username=admin&password=password”)。在GET方法中,Query是最常用的参数传递方式,它允许用户通过URL中的键值对来传递参数。4.Header:用于定义HTTP请求的头信息部分,包括各种头部字段,如“Content-Type”、“Authorization”等。在GET方法中,Header通常不会用来传递参数,而是用于定义请求的头部信息。1.配置输出参数如果一切都填对了没有问题的话,我们可以直接点击自动解析,会自动调用一次API给出对应的输出参数我填入汉字“张”。点击自动解析解析成功后会显示解析成功,我们可以看到输出参数已经填好。然后我们点击保存并继续参数描述可以根据需求填写。既是提醒用户也是提醒自己,建议填写~1.调试与校验测试一下我们的工具,是否能正常运行。运行后查看输出结果Request为输入的传参Response为返回值点击Response就可以看到解析后的参数

韦恩:扣子"AI应用"进阶,带你搭建价值万元的邮票收藏馆应用

这个Idea是源于一个客户,客户想做产品邮票的需求,然后后来没成交。随着即梦2.1生图模型的出现,让这件事成为可能,直接生图,生成邮票样式的图片,还是很好玩的,我做好了之后,抽了一堆卡。言归正传,说一下这个AI应用的功能,生成邮票、收藏邮票、收藏列表、查看藏品详情,然后页面上规划了两个页面,一个是生成相关的,一个是查看相关的,这样体验会好一些,交互也好做。现阶段,不适合做特别复杂的应用交互,咱们开始吧。[heading2]2、页面设计[heading3]2.1、第一页[content]导航栏:应用名称、查看收藏入口、用户头像陈列展示:上传一些生成的图片,让用户看到邮票的可能性生成和收藏:输入邮票关键字,然后立即生成,下面展示生成效果,满意就点理解收藏查看收藏:收藏之后,点击顶部查看收藏入口,进入新页面[heading3]2.2、第二页[content]收藏列表:在进入页面时会加载用户的所有收藏,现在最大数量是100,再多了需要优化一下,加翻页收藏详情:点击收藏的邮票,可以查看邮票的大图、邮票生成的关键字、收藏时间,时间格式带了东八区的标识返回首页:点击返回首页。

Others are asking
flux提示词示例
以下是一些关于 flux 提示词的示例: 在不同主题方面,如文本概括(https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E6%A6%82%E6%8B%AC)、信息提取(https://www.promptingguide.ai/zh/introduction/examples%E4%BF%A1%E6%81%AF%E6%8F%90%E5%8F%96)、问答(https://www.promptingguide.ai/zh/introduction/examples%E9%97%AE%E7%AD%94)、文本分类(https://www.promptingguide.ai/zh/introduction/examples%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB)、对话(https://www.promptingguide.ai/zh/introduction/examples%E5%AF%B9%E8%AF%9D)、代码生成(https://www.promptingguide.ai/zh/introduction/examples%E4%BB%A3%E7%A0%81%E7%94%9F%E6%88%90)、推理(https://www.promptingguide.ai/zh/introduction/examples%E6%8E%A8%E7%90%86),通过示例介绍说明如何使用精细的提示词来执行不同类型的任务。 在 Claude2 中文精读中,构建提示词时可以添加示例(可选)。您可以通过在提示词中加入一些示例,让 Claude 更好地了解如何正确执行任务。提供示例的方式可以是以先前对话的形式,用不同的对话分隔符,例如用“我”代替“Human:”,用“你”代替“Assistant:”;也可以直接提供例子。决定哪种方法更有效取决于具体任务,建议尝试两种方法以确定更好的结果。 在市场营销类中,如赛博佛祖(Kyle)的示例,其角色设定为熟悉佛教经典、境界很高的佛学大师,能为对人生感到迷茫的人指引方向。具体设定包括引用相关佛教经典语录并解释含义,提供有效建议等,并给出了详细的约束条件和链接地址()。
2025-01-20
请你给我提供一段coze工作流节点中,代码示例
以下是 Coze 工作流节点中的一些代码示例: 把段落按换行符(/n)拆分成数组的代码示例。 在大模型节点通过提示词和示例,让大模型直接输出数组。 使用文本处理(文本分隔)。 在 Coze 工作流中搭建框架时,首先进入 Coze,点击「个人空间工作流创建工作流」打开弹窗,根据弹窗要求自定义工作流信息,点击确认完成新建。左侧「选择节点」模块中,根据子任务需要,实际用到的有插件(提供能力工具)、大模型(实现文本内容生成)、代码(支持编写简单脚本处理数据)。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成框架搭建。
2025-01-07
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
咱们有dify的好的实践教程或示例吗
以下是关于 Dify 的一些实践教程和相关信息: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 构建知识库的具体步骤: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 介绍:Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-22
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
有没有什么帮助非虚构创作的prompt示例
非虚构创作(Nonfiction writing)通常基于事实、真实事件或个人经验。使用AI生成的prompt(提示词或提示短语)可以帮助非虚构创作者激发灵感、梳理思路或增加内容深度。以下是一些帮助非虚构创作的prompt示例: 1. 回忆录写作: "描述你童年最难忘的一个夏天,包括那时的天气、你穿的衣服和你的感受。" 2. 历史事件分析: "如果历史中的没有发生,我们的世界会有哪些不同?" 3. 科技评论: "讨论人工智能如何改变我们处理的方式。" 4. 个人成长故事: "回想一次你克服了巨大困难的经历,你是如何找到解决问题的方法的?" 5. 教育观点: "在当前教育体系中,我们如何更有效地培养学生的?" 6. 职业发展建议: "如果你要给刚入行的提建议,你会说什么?" 7. 健康与生活方式: "解释为什么定期进行对身心健康至关重要。" 8. 社会问题探讨: "分析对不同群体的长期和短期影响。" 9. 旅行写作: "描述你在的旅行经历,包括当地的文化、食物和你遇到的人们。" 10. 环境问题: "讨论我们如何通过改变日常习惯来对抗。" 11. 人物特写: "撰写一篇关于的特写,包括他们的成就、挑战和个人生活。" 12. 文化评论: "分析如何反映了当代社会的价值观和趋势。" 13. 商业策略: "讨论在中,创新如何帮助企业保持竞争力。" 14. 技术教程: "逐步解释如何使用。" 15. 政策分析: "评估的潜在好处和风险。" 使用这些prompts可以帮助非虚构创作者从不同角度审视主题,挖掘更深层次的内容,以及探索新的写作方向。
2024-07-24
扣子工作流设置
扣子工作流设置如下: 在故事与绘本的 AI 应用中: 开始节点输入参数包括 Theme(主题)、Plot(情节)、Characters(角色)、Setting(设定)。 文章生成 LLM 节点输出文章故事。 提取文章关键字节点输出文章关键字,需注意输入文章格式,由代码提取关键字内容,防止因格式问题导致大模型输出时间问题。 关键字优化节点输出有关故事的关键字节点信息,优化方案包括 Photography Theme/Style(摄影主题/风格)等多项内容。 图片生成节点输出内容为图片 URL,要求输出图片内容与提示词内容正相关,输出图片为动漫风格。 利用 AI 批量生成、模仿和复刻《小林漫画》时: 点击工作流后面的“➕”添加工作流,然后点击创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰即可。 初始化工作流,左边有各种插件和搭建 Agent 的工具,可点击加号或拖拽使用,插件一般有参数说明。初始化后会生成开始模块和结束模块,且只有一个。 工作流录制了视频可供观看,其中使用 text2image 时需注意 prompt 参数设置。 包括金句创作、提取拆分代码、绘画提示词生成等内容。 在落地应用中: 可通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型使用 Groq 作为 LLM,也可参考相关教程将扣子接入微信机器人,但有微信封号风险。 Groq 的 API 与 OpenAI 的 API 几乎兼容,可适配到任何 APP 产品填 APIKEY 调用的场景,如沉浸式翻译。 可接入手机类 APP,如通过快捷方式接入 Siri。 接入扣子工作流时,工作流的搭建细节可移步 WaytoAGI 自学,建立工作流只需一个代码节点,需配置输入引用和输出格式,测试工作流保证代码块有正常输出,可建立 Bot 调用工作流,但不建议发布以免代理流量被他人使用。
2025-01-20
扣子工作流教程
以下是一些关于扣子工作流的教程资源: 视频教程: 【Agent 共学第二期】艾木分享|这也许是你一生中第一个 Bot:https://www.bilibili.com/video/BV1XT421i7jH/ 一步一步带你手搓一个 Coze Bot——Dr.Know(极简版 Perplexity):https://www.bilibili.com/video/av1005221752 扣子(coze)系列教程(四):工作流中各节点常用使用方式:https://www.bilibili.com/video/BV1ux4y1J761/ Coze 工作流的手把手教程,让你的 Bot 高质量的处理复杂任务!:https://www.bilibili.com/video/BV1PZ421g7xT/ 微信文章教程: 扣子工作流实战案例教程,手把手教你搭建一个图书管理工作流:https://mp.weixin.qq.com/s/Fh3Vm3EDSzoYVxf91GcMMA 使用扣子 Coze 创建 AI 绘画工作流:https://mp.weixin.qq.com/s/d_6yST8JXKf1Tr6JgBPFg 奶奶也学得会的 AI 工作流,省时省力下班早!:https://mp.weixin.qq.com/s/bXC8DHzs5_OgPh3FtKhJZA 中文 GPTS 使用秘籍,字节扣子 Coze 工作流使用全教程:https://zhuanlan.zhihu.com/p/682108709 Workflow 实践|使用 coze 复现一个 AIGC 信息检索 Bot:https://mp.weixin.qq.com/s/PFgjRq7XcTcqog1gLyFqA AI 自动获取 B 站视频摘要信息:https://mp.weixin.qq.com/s/x8lwvlomhFNLZl__qYuDww 如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法):https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q 飞书社区教程: Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平:https://waytoagi.feishu.cn/wiki/LRskwrJkli3CgkkY06xcC3HanBh?from=from_copylink Stuart:我把 Coze 比赛第一的 bot 拆了教大家:https://waytoagi.feishu.cn/wiki/Qt8Bwgl3PihQNukO7PjcmeuJnJg?from=from_copylink 画小二:用 Coze 工作流制作行业简报:实战案例画小二日报:https://waytoagi.feishu.cn/wiki/HmIhwt1IkiIAzok73rDcgG7fnQg?from=from_copylink 画小二:Coze 工作流之抖音热门视频转小红书图文详细配置:https://waytoagi.feishu.cn/wiki/MV7gw298TiBajFkSrFeceYRMnXc?from=from_copylink 扣子版虚拟女友李思思的思路:https://waytoagi.feishu.cn/wiki/O9M4w66fxiElylkBkCRcP6jLnsg?from=from_copylink 此外,还有关于白嫖 Groq 平台算力并接入扣子工作流的保姆级教程: 此时我们有了代理服务器和 APIKEY,落地使用方式举例: 1. 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,而且可以参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险) 2. 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品可以用来填 APIKEY 调用的场景,此处用沉浸式翻译举例(如果还不知道沉浸式翻译这个超级好用的网页翻译工具的,请访问 https://immersivetranslate.com/自行安装) 3. 接入手机类 APP,比如通过快捷方式接入 Siri(此处卖个关子,留着 728 线下切磋赚积分,希望线下小伙伴来找我) 接入扣子工作流: 1. 扣子工作流的搭建细节本篇不详细叙述,请移步 WaytoAGI 自学。 2. 建立工作流,只需要一个代码节点,如下: Copy 以下代码进入代码节点,其中代码节点的输入引用请自行配置为开始节点的用户输入,输出改为“output”,格式为“string” 测试工作流,保证代码块有正常输出(可以看到此处消耗 0 Tokens,白嫖算力成功,在扣子即将收费之际,后续可能可以派上大用处,代替工作流 LLM 节点) 可以建立一个 Bot,来仅仅调用该工作流,建议不要发布,否则你的 Deno 代理流量可能被其他人用。 其他就可以自行发挥了,接入微信等。
2025-01-14
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
我要做一个密室逃脱的智能体,在扣子里怎么实现
要在扣子中实现密室逃脱的智能体,以下是一些相关的信息和思路供您参考: 智能体的实现通常包括工作流和数据库。工作流的设计相对简单,一般是一个输入,对接知识库,搭载模型,最后输出。数据库的收集和整理有一定难度,需要进行资料收集和手动二次校对。 在多智能体模式设置方面,主要包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理以及对话体验等全局性因素。在全局设置中,人物设定与回复逻辑的填充要侧重于角色塑造。智能体的交互流程应形成完整的互动链条,设计为闭环结构,以确保用户能在不同智能体之间自由切换。 例如在旅游场景中,可设计分别负责景点推荐、路线规划和食宿安排的三个智能体。先写好提示词,做好全局人物设定,然后在扣子上进行编排。 但需要注意的是,目前提供的内容中没有直接针对密室逃脱智能体实现的具体步骤和方法,您可能需要根据密室逃脱的特点和需求,进一步细化和定制相关的设置和流程。
2025-01-09
有扣子智能体搭建相关的课程吗
以下是与扣子智能体搭建相关的课程信息: 1. 无企业资质也能 coze 变现!手把手教你通过卖 Key 方式:Zion 威少模板跟着搭——支持上架多个智能体。上节课分享了如何用 Zion 把您的 Coze bot 打造成能赚钱的工具,包括前端页面设计和用户支付链路搭建等。点击回顾往期内容👉🏻,内含变现案例实操分享。针对常见难题,本期特别邀请了 Coze+Zion 独立开发者威少(B站:赛博画手威少@wei)开发的一个“Coze 变现模板(多智能体版)”,无需企业支付宝账号,个人用户也能轻松实现变现和收款。模板页面演示:https://coze.weishao.vip/ 。 2. 扣子案例合集社区内容分享: 3. 02 基础通识课: 智能纪要:本章节主要对整节分享进行复习。内容包括模型中数据集的清洗、抽取,rag 基于知识库存储数据到向量数据库方便检索,IAG 快速检索数据,编辑生成平台构建 prompt 的技巧,agent 概念,插件 pragin,运维平台,缓存机制,还提到大模型接入多家模型,以及 AI 改变工作流等。 智能章节:本章节主要介绍 AI 工程平台在日常生活中的帮助及使用方法。以扣子平台为例,其新版本有很多模板帮助学习。如名画照相馆工作流,能进行名画换脸操作。平台中的工作流程包含很多节点,且有多种插件工具,像必应搜索、链接读取、代码执行器等可供使用。本章节主要讲述代码方面更高阶需求可编写自己代码,提到知识库可存储文稿信息。重点介绍了一个名画处理工作流,包括开始节点的输入内容如用户照片、名画内容、性别等,工作流中涉及大模型意图分析、结构化整理、历史撰写以及图像生成模型等操作。
2025-01-04
扣子智能体搭建教程
以下是扣子智能体的搭建教程: 扣子是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。 搭建步骤如下: 1. 创建一个 Bot: 系统默认创建了一个 Personal 的个人团队,该团队内创建的资源例如 Bot、插件、知识库等无法分享给其他团队成员。您也可以创建团队或加入其他团队,更多信息,请参考。 进入团队空间后,默认打开 Bots 页面。 在 Bots 页面,单击创建 Bot。 输入 Bot 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像。 单击确认。Bot 创建后,您会直接进入 Bot 编排页面。您可以在左侧人设与回复逻辑面板中描述 Bot 的身份和任务。单击复制可使用模板格式添加描述。您可以在中间技能面板为 Bot 配置各种扩展能力。在右侧预览与调试面板中,实时调试 Bot。 2. 编写提示词: 配置 Bot 的第一步是编写提示词(Bot 的人设与回复逻辑功能)。提示词是给大型语言模型(LLM)的指令,以指导其生成输出。Bot 根据 LLM 对提示词的理解来回答用户的问题。提示越清晰,就越符合预期。 在 Bot 配置页面的人设与回复逻辑面板中输入内容。例如:您可以单击优化,让大语言模型优化为结构化内容。更多详细信息,参考。 此外,通过简单 3 步也可以创建智能体:首先要起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像即可。创建时,智能体的介绍越详细越好,因为它会根据您的介绍智能生成符合主题的图标。
2025-01-04
我想学习智能体搭建
以下是关于智能体搭建的相关知识: 智谱 BigModel 共学营第二期:把你的微信变成超级 AI 助理 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户,注册即送 2000 万 Tokens 充值/购买多种模型的低价福利资源包 直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay 语言资源包:免费 GLM4Flash 语言模型/ 多模态资源包: 多模态资源包: 所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 共学营报名赠送资源包 2. 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建,此智能体完成以下功能: 小众打卡地——优秀创作者奖 1. 智能体基本信息 名称:小众打卡地 链接:https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService 2. 基本功能介绍:小众打卡地推荐,输入一个旅游目的地地点城市,给您推荐 3 个小众打卡地小红书类文案,适合分享或旅游参考,还有精美的旅行地配图。 3. 智能体核心价值 为用户发掘非大众化的特色景点,避开人流 提供个性化的旅行建议,并且有目的地的图片参考 帮助用户快速获取高质量的旅行参考信息 提供小红书文案,也适合发小红书 4. 智能体效果 输入一个目的地后,等待一小段时间,即可获得带图文案。从手机支付宝小程序更加方便,可以一键复制后获取。 5. 智能体搭建思路重点 录入了小红书的相关文案参考知识库 通过文本模型组成搜索词进行搜索,从搜索到的所有网页链接中,通过代码节点提取相关的 url 用代码节点滤除需要安全认证的网站,包括挑选一些非周边城市攻略推荐,并且尽量检查“小众”或“冷门” 通过 url 网页正文后,提取相关的小众地点输出,同时通过代码进行打卡点的字符串输出用于后续节点运用 根据需要搜索的小众旅行地进行图片搜索。此处代码节点随机提取一条图片的 url,注意此处在调试过程中发现有些图片搜索后的 url 打卡图片会失效,代码节点将部分失效的网站进行了过滤 最后的文案输出,非常适合小红书文案和旅行发布参考 智能体在品牌卖点提炼中的应用 1. 确定智能体的结构 按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体 以品牌卖点提炼六步法为核心的流程,将其他的分析助手加入工作流中,包括: 品牌卖点定义与分类助手 品牌卖点提炼六步法 STP 市场分析助手 用户画像分析助手 触点收集助手 同时还包括一些结构中没有体现,但是在后续的品牌卖点应用过程中有效的分析工具: 用户需求分析的 KANO 助手 营销六层转化漏斗分析 超级转化率六要素
2025-01-22
如何搭建定制知识库
以下是关于如何搭建定制知识库的相关内容: 要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。 embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gptindex.readthedocs.io/en/latest/ 在基于大模型+知识库的 Code Review 实践中,对于自定义知识库飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。 因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。 最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。
2025-01-22
如何搭建私人知识库
搭建私人知识库可以参考以下方法: 1. 基于 GPT 搭建: 给 GPT 输入(投喂)定制化的知识,但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,当用户提出问题时,将问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 2. 本地部署大模型搭建: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 的应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-22
搜索模型搭建
以下是关于搜索模型搭建的相关知识: 嵌入(Embeddings): 概述:第一代模型(以001结尾的模型)都使用 GPT3 分词器,最大输入为 2046 个分词。第一代嵌入由五个不同的模型系列生成,针对三个不同任务进行调整,包括文本搜索、文本相似性和代码搜索。搜索模型成对出现,有用于短查询和长文档的。不同系列包括多种质量和速度不同的型号,如 Davinci 能力最强但更慢更贵,Ada 能力最差但速度快成本低。 相似性嵌入:最擅长捕捉文本片段之间语义相似性,如 textsimilaritybabbage001、textsimilaritycurie001、textsimilaritydavinci001。 文本搜索嵌入:有助于衡量长文档与短搜索查询的相关性,使用两种模型,分别用于嵌入搜索查询和要排名的文档,如 textsearchadaquery001 等。 代码搜索嵌入:与搜索嵌入类似,有两种类型,分别用于嵌入自然语言搜索查询和要检索的代码片段,如 codesearchadatext001 等。对于001 文本嵌入,建议将输入中的换行符替换为单个空格。 部署大语言模型: 下载并安装 Ollama:根据电脑系统,从 https://ollama.com/download 下载,双击打开点击“Install”,安装完成后将下方地址复制进浏览器中,若出现相关字样表示安装完成,即 http://127.0.0.1:11434/ 。 下载 qwen2:0.5b 模型:Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑按下 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”选择“终端”应用程序,复制相关命令行粘贴回车等待完成。 检索原理: 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,涉及对信息来源、时效性和相关性的验证。 消除冗余:识别和去除多个文档或数据源中的重复信息。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 语义融合:合并意义相近但表达不同的信息片段。 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式。 大模型生成回答:全新的上下文传递给大语言模型,大语言模型根据提供的信息回答问题。
2025-01-19
如果搭建ai智能体
搭建 AI 智能体可以参考以下步骤: 1. 明确需求:在品牌卖点提炼中,要清楚 AI 智能体是引导型助手,帮助提供思考维度,而非直接给出从 0 到 1 的卖点。 2. 明确 AI 的能力和局限:AI 对公司的诸多方面了解程度接近于 0,如主要产品、产品解决的用户需求、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等。但 AI 能通过分析数据和信息进行逻辑推理、快速处理和分析数据、利用大量训练数据输出更全面信息、理解用户内容并按正确结构梳理输出。 3. 逐步搭建: 配置工作流,得到可用的工作流(如整理入库、选择内容)。 进行整体配置,包括创建 Bot、填写 Bot 介绍、切换模型(如测试效果较好的通义千问)、添加工作流、新增变量{{app_token}}、添加外层 bot 提示词等。完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-01-19
如果搭建一个智能写作AI
搭建一个智能写作 AI 可以参考以下步骤: 1. 了解生成式人工智能的工作原理: 监督学习在人工智能领域一直占据很大比例,生成式 AI 由监督学习技术搭建。 大语言模型通过使用监督学习不断预测下一个词语来生成文本,需要千亿甚至万亿级别的单词数据库。 2. 认识大语言模型的特点: 大语言模型在写故事、修改文本等方面非常有用。 但它可能会编造故事产生错误信息,需要鉴别信息准确性。 网络搜索与大语言模型有区别,网络搜索可追寻信息来源,大语言模型可提供建议与策略。 3. 明确人工智能的应用空间: 人工智能有大量运用空间,如基于网络界面应用和基于软件程序应用。 使用大语言模型写作,集思广益、头脑风暴很有用,翻译也可以使用,但网络文本较少时效果可能不太好。 4. 搭建 AI 工作流: 学会搭建 AI 智能体,它能根据设定的工作流自动调用不同的 AI 工具完成全流程任务。 例如设计“写作助手”的 AI 智能体,输入文章的主题、风格和要求,它能自动完成文章大纲处理、初稿写作、修改润色和排版等工作。 5. 拆解高效写作的关键步骤: 写作是一个逐步的过程,要先梳理没有 AI 工具时的工作流,再考虑引入 AI 赋能。 比如写公众号文章,要先选题、搜资料、列提纲、起标题、配图片、排版发布等,拆解清楚每个环节,判断 AI 能提供的帮助。
2025-01-19
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
系统学习并最终应用ai辅助工作
以下是关于系统学习并最终应用 AI 辅助工作的相关内容: 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并可能成为下一代专家的教师。我们可以通过构建系统深入探索其内部工作机制,创造学习的飞轮。 企业级 AI 应用开发知识点: 智能体应用(Assistant):基于上下文对话,自主决策并调用工具完成复杂任务的对话式 AI 应用。可用于客户服务、个人助理、技术支持等场景。 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。例如 AI 翻译。 智能体编排应用:支持多智能体协作的流程式 AI 应用,可编排多个智能体的执行逻辑。如综合调研报告、软件开发团队的组建。 教师使用 AI 的小技巧: 可控地引导学生,将部分课程、任务用 AI 辅助,同时限制部分课程的 AI 使用以培养独立思考和解决问题的能力。 人工智能用于集思广益和构建想法,但最终的工作必须由人类创作,对于想法发展和外语课程很有用。相关活动包括协作集思广益、创建结构化大纲、研究协助。 学生使用生成式人工智能来完善和编辑他们的作品,有利于语言改进和多模式内容。相关活动包括纠正语法/拼写、建议同义词、结构编辑、可视化编辑。 完全使用 AI,在整个任务中使用 AI,具体由学生或教师自行决定。适合那些生成式 AI 对学习结果非常关键的任务。相关活动包括共同创作、探索生成式 AI、实时反馈以及创建生成式 AI 产品。
2025-01-21
ai在教育领域的应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-21
国内哪款AI应用在咨询解答方面比较好
以下是国内在咨询解答方面表现较好的一些 AI 应用: 1. 抖音搜索:是一个独立 App,增加了 AI 问答功能。字节旗下还有“豆包”这一国民级的 AI 应用入口。 2. 小红书: 点点:独立的 AI 搜索 App,基于小红书和少量外部数据,回答用户提出的攻略、美食、经验等问题。 问点点:小红书 App 内的 AI 问答页面,从检索框可以进入。 3. 作业帮智能辅导:为学生提供个性化学习辅导,使用机器学习、自然语言处理技术,市场规模百亿美元以上。 4. 法信智能法律咨询:解答法律问题提供法律咨询,使用自然语言处理、知识图谱技术,市场规模数亿美元。 此外,国内免费的大模型 APP 有 Kimi 智能助手(Moonshot AI 出品)、文心一言(百度出品)、通义千问(阿里云开发)。
2025-01-21
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
目前在各个应用领域,主流的AI工具有哪些,请分别介绍.
以下是一些主流的 AI 工具及其应用领域的介绍: 1. AI 菜谱口味调整工具:如“下厨房口味调整功能”,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户反馈调整菜谱口味,例如增加甜度、减少辣味等。 2. AI 语言学习纠错平台:像“英语流利说纠错功能”,运用自然语言处理和机器学习,市场规模达数十亿美元。可帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习。 3. AI 电影剧情分析系统:例如“豆瓣电影剧情分析工具”,借助数据分析和自然语言处理,市场规模达数亿美元。能够分析电影剧情,为用户提供深度解读。 4. AI 办公文件分类系统:比如“腾讯文档分类功能”,采用数据分析和机器学习,市场规模达数亿美元。可自动分类办公文件,方便管理。 5. AI 美容护肤方案定制平台:“美丽修行定制方案功能”,利用图像识别和数据分析,市场规模达数亿美元。能根据用户肤质定制护肤方案,包括产品推荐和使用顺序。 6. AI 游戏道具推荐系统:在一些游戏中的“游戏内商城推荐功能”,通过数据分析和机器学习,市场规模达数亿美元。可根据玩家需求推荐游戏道具,如武器、装备等。 7. AI 天气预报分时服务:“彩云天气分时预报”,运用数据分析和机器学习,市场规模达数亿美元。提供精准的分时天气预报,帮助用户更好地安排出行和活动。 8. AI 医疗病历分析平台:“医渡云病历分析系统”,借助数据分析和自然语言处理,市场规模达数十亿美元。可分析医疗病历,为医生提供辅助诊断建议。 9. AI 会议发言总结工具:“讯飞听见会议总结功能”,使用自然语言处理和机器学习,市场规模达数亿美元。能够自动总结会议发言内容,方便回顾和整理。 10. AI 书法作品临摹辅助工具:“书法临摹软件”,利用图像识别和数据分析,市场规模达数亿美元。帮助书法爱好者进行临摹,提供临摹指导和评价。 11. 超级简历优化助手:“AI 简历优化工具”,运用自然语言处理,市场规模达数亿美元。帮助用户优化简历,提高求职成功率。 12. 酷家乐等设计软件:“AI 室内设计方案生成”,借助图像生成和机器学习,市场规模达数十亿美元。能快速生成个性化室内设计方案。 13. Amper Music:“AI 音乐创作辅助工具”,采用机器学习和音频处理,市场规模达数亿美元。协助音乐创作者进行创作,可根据用户需求生成旋律和编曲。 14. 松果倾诉智能助手:“AI 情感咨询助手”,通过自然语言处理和情感分析,市场规模达数亿美元。为用户提供情感支持和建议,通过文字或语音交流。 15. 小佩宠物智能设备:“AI 宠物健康监测设备”,利用传感器数据处理和机器学习,市场规模达数十亿美元。可实时监测宠物健康状况,提供健康预警。 16. 马蜂窝智能行程规划:“AI 旅游行程规划器”,借助数据分析和自然语言处理,市场规模达数十亿美元。能根据用户需求生成个性化旅游行程。
2025-01-20