Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了

Answer

在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因:

  1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。
  2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。
  3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。
  4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。

为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。

Content generated by AI large model, please carefully verify (powered by aily)

References

南瓜博士:让 AI 的回复更有灵性(人味儿)的 Prompt 小技巧 副本

大家都知道,GPT回答问题特别喜欢用1、2、3、4或“首先、其次、最后”,一股AI味,很无趣。怎样让它别这么古板呢?常见的用法是:让GPT扮演一个特定的角色,给出明确的输出要求。有效吗?有效。这样写了后,果然GPT回答问题就不是“首先、其次”了。但换汤不换药、内容往往差异不大,依旧不是有趣的灵魂。怎样能有一个你真的愿意每天和它对话的AI陪伴者?——让它在说的话中加点儿感情。怎么加?来看这个和伍尔夫围炉夜话的GPTs。首先我营造了一个夜话的环境:享受炉火与热茶。更重要的是:我让它用括号把动作给写出来。你会用()的方式补充你的动作GPTs里的Prompt就这么简单。但我在第一次和AI伍尔夫对话时,给了它一个In-Context-Lerning(上下文学习)的机会,先示范一下:括号——拨动了下炉火中的木炭,火苗亮了起来——括号,然后才开始提问:(拨动了下炉火中的木炭,火苗亮了起来)凯恩斯说以后未来人们每周只要工作15小时。科技都那么发达了,为什么我们却越来越忙碌?你可以看到接下来发生了什么——AI伍尔夫她微笑地看着炉火,然后转过头来看向你。画面感出来了吧!因为有这样的画面,它后面回复的文字也都是这个调调的。然后我不需要再做示范,AI一直能记着用括号。当我说有“刹不住车的感觉”时她会“轻轻点头”让我感觉自己有被听见。

南瓜博士:让 AI 的回复更有灵性(人味儿)的 Prompt 小技巧

大家都知道,GPT回答问题特别喜欢用1、2、3、4或“首先、其次、最后”,一股AI味,很无趣。怎样让它别这么古板呢?常见的用法是:让GPT扮演一个特定的角色,给出明确的输出要求。有效吗?有效。这样写了后,果然GPT回答问题就不是“首先、其次”了。但换汤不换药、内容往往差异不大,依旧不是有趣的灵魂。怎样能有一个你真的愿意每天和它对话的AI陪伴者?——让它在说的话中加点儿感情。怎么加?来看这个和伍尔夫围炉夜话的GPTs。首先我营造了一个夜话的环境:享受炉火与热茶。更重要的是:我让它用括号把动作给写出来。你会用()的方式补充你的动作GPTs里的Prompt就这么简单。但我在第一次和AI伍尔夫对话时,给了它一个In-Context-Lerning(上下文学习)的机会,先示范一下:括号——拨动了下炉火中的木炭,火苗亮了起来——括号,然后才开始提问:(拨动了下炉火中的木炭,火苗亮了起来)凯恩斯说以后未来人们每周只要工作15小时。科技都那么发达了,为什么我们却越来越忙碌?你可以看到接下来发生了什么——AI伍尔夫她微笑地看着炉火,然后转过头来看向你。画面感出来了吧!因为有这样的画面,它后面回复的文字也都是这个调调的。然后我不需要再做示范,AI一直能记着用括号。当我说有“刹不住车的感觉”时她会“轻轻点头”让我感觉自己有被听见。

如何使用 AI 来做事:一份带有观点的指南

为了回应你的答案,AI很容易“产生幻觉”并生成看似合理的事实。它可以生成完全错误的内容,而且非常令人信服。让我强调一下:AI连续且良好地撒谎。它告诉你的每一件事或信息可能都是不正确的。你需要检查所有的东西。你需要全部检查一下。特别危险的是要求它为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)。因为GPT-4通常更加扎实,因为Bing的互联网连接意味着它实际上可以拉入相关事实。[这是一份避免幻觉的指南](https://oneusefulthing.substack.com/p/how-to-get-an-ai-to-lie-to-you-in),但它们不可能完全消除。另请注意,人工智能不会解释自己,它只会让你认为它解释了自己。如果你要求它解释它为什么写东西,它会给你一个完全编造的合理答案。当你询问它的思考过程时,它并没有审查自己的行动,它只是生成听起来像它在做这样的文本。这使得理解系统中的偏见非常困难,尽管这些偏见几乎肯定存在。它也可以被不道德地用来操纵或作弊。你对这些工具的输出负责。

Others are asking
最好的小说创作AI
目前没有明确的“最好的小说创作 AI”。但在小说创作中,有以下相关经验和方法: 陈财猫提出,在创作时不能完全依赖固定的故事结构,如“英雄之旅”理论。使用 AI 创作小说时,可采用“显式归纳与列出你想要的文本特征”的技巧,例如明确描述“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等文本特点,并在调试过程中适度增减条件或描述,以达到理想效果。 南瓜博士在人机协作小说创作中发现,尽管尝试了让 AI 自动按步骤写作、评判等方法,但因无法认同 AI 的审美而放弃。最终选择在 GPT 页面上对话,先让 AI 生成大量创意,自己进行判断和挑拣,在写作过程中自己掌舵,最后给出改进意见让 AI 遵循修改。这表明在小说创作中,人有着重要的作用。
2025-01-17
最好的写作AI
以下是关于写作 AI 的相关信息: 邮件写作 AI 工具: 1. Grammarly: 功能:提供语法检查、拼写纠正、风格建议和语气调整等功能。 优点:易于使用,支持多种平台(如浏览器扩展、桌面应用、手机应用),适用于多种语言。 网站:https://www.grammarly.com/ 2. Hemingway Editor: 功能:简化句子结构,提高可读性,标记复杂句和冗长句。 优点:界面简洁,重点突出,适用于改善写作风格和简洁性。 网站:http://www.hemingwayapp.com/ 3. ProWritingAid: 功能:全面的语法和风格检查,提供详细的写作报告和建议。 优点:功能强大,支持多种平台和集成,特别适合专业写作者。 网站:https://prowritingaid.com/ 4. Writesonic: 功能:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。 优点:生成速度快,适合需要快速创作和灵感的用户。 网站:https://writesonic.com/ 5. Lavender: 功能:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 优点:专注邮件领域,提供具体的改进建议和实时反馈。 使用 AI 写作的工具和方法: 最佳免费选项:Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)和 Claude 2(https://claude.ai/) 付费选项:带有插件的 ChatGPT 4.0/ChatGPT 目前,GPT4 仍然是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。然而,Claude 是紧随其后的第二名,也提供了有限的免费选项。 用 AI 写出好文字的方法: 1. 选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力。 2. 克服平庸,平衡“控制”与“松绑”。 3. 显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。
2025-01-17
ai画cad
以下是关于 AI 画 CAD 及相关资料的信息: 用于画 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 主流 CAD 软件的生成设计工具:如 Autodesk 系列、SolidWorks 等,可根据设计目标和约束条件自动产生多种设计方案。 获取 AI 生成 CAD 图相关资料的途径: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索。 2. 专业书籍:查找相关专业书籍了解应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台的课程,在 YouTube 等平台查找教程和演示视频。 4. 技术论坛和社区:加入 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习,关注相关博客和新闻网站。 5. 开源项目和代码库:探索 GitHub 等开源平台上的项目,如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。 AI 绘画常用提示词(风格提示词): pointillism 点彩派、Claude Monet 克劳德莫奈、quilted art 桁缝艺术、partial anatomy 局部解剖、color ink on paper 彩墨纸本、doodle 涂鸦、Voynich manuscript 伏尼契手稿、book page 书页、realistic 真实的、3D 3D 风格、sophisticated 复杂的、photoreal 真实感、national geographic 国家地理、hyperrealism 超写实主义、cinematic 电影股的、architectural sketching 建筑素描、symmetrical portrait 对称肖像、clear facial features 清晰的面部特征、interior design 室内设计、weapon design 武器设计、subsurface scattering 次表面散射、Game scene graph 游戏场景图、character concept art 角色概念艺术
2025-01-17
我是小白,想要学习AI,从哪开始
对于小白想要学习 AI,您可以从以下几个方面开始: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,比如学习模式可以是输入→模仿→自发创造。在学习过程中,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。而且,学习资源大多是免费开源的。需要注意的是,学习状态很重要,能学多少算多少,不必有心理压力。
2025-01-17
制作短视频方面,AI 能帮我做些什么
在制作短视频方面,AI 能为您提供以下帮助: 1. 根据视频脚本生成短视频: ChatGPT + 剪映:ChatGPT 生成视频脚本,剪映根据脚本分析出所需场景、角色、镜头等要素并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助从图像制作视频并规划内容。 Runway:将文本转化为风格化视频内容,适用于多种场景。 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 2. 故事创作与剧本写作: 故事来源:可以是原创,如自身或周围人的经历、做过的梦、想象的故事等;也可以是改编,如经典 IP、名著、新闻、二创等。 剧本写作:编剧有一定门槛,建议先写再看书,不断实践和总结经验。短片创作可从自身或朋友经历改编入手,或对短篇故事进行改编,多与他人讨论修改。 3. 视频制作相关工具: 动画工具:用于在视频中为人脸制作动画的 DiD,用于从文本创建视频的 Runway v2。 语音克隆:ElevenLabs。 需要注意的是,深度伪造是一个问题,这些系统需要合乎道德地使用。同时,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-17
一句话向完全不了解AI的人介绍什么是AI,并且让他理解什么是AI
AI 是一种模仿人类思维,可以理解自然语言并输出自然语言的存在。对于不具备理工科背景的人来说,可以把它当成一个黑箱。它就像某种可以理解人类文字但不是人的魔法精灵或器灵,其生态位是似人而非人的。 AI 包含多种技术和概念,比如: 1. 生成式 AI 生成的内容称为 AIGC。 2. 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 3. 深度学习是一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-17
解释AI中连续问答时,为什么有时候
在 AI 中进行连续问答时,存在以下情况: 1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。 2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。 3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。 4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
2025-01-17
问答对挖掘
以下是关于提升问答效果的技巧: 1. 智能问答的原理和注意事项:在召回排序的逻辑中,文档总标题在相似度计算中权重较高。若文档总标题与用户问题吻合,相关片段在排序中更靠前,送入大模型的可能性更大。但正文与总标题相关性不高可能导致回答不准确、答非所问。 2. 编写文档的注意事项: 文档的标题内容需与正文有强相关性。 不同的知识点尽量分段书写,合理控制段落长度。不同主题通过子标题区分,子标题下正文每个段落对应一个明确知识点,避免多个知识点混合,以保证每个片段主题鲜明,在用户提问相关问题时,该片段在召回排序中更靠前。同时,每个段落尽量不超过 500 字,过长段落可能在文档分割时被切割成多个片段,打散段落主题,导致最终召回的片段内容不全、答案不够全面。 3. 对于经常被问到的内容,可写成问答对(FAQ)格式。问答对包含问题描述,用户提出相关问题时,包含该问答对的片段在召回排序中非常靠前,更可能被送入大模型,给出准确回答。样例参考可查看相关示例。
2025-01-11
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
智能问答机器人
以下是关于智能问答机器人的相关信息: 一、关于“我是谁” 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话、信息获取、协助创作等任务。 二、使用方法 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在),点击加入,直接@机器人即可。 2. 在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 在飞书 5000 人大群里,内置了智能机器人「waytoAGI 知识库智能问答」,基于飞书 aily 搭建。您只需在飞书群里发起话题时候即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 三、做问答机器人的原因 1. 整个知识库内容庞大且丰富,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义价值。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 四、飞书群问答机器人的功能 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 五、搭建问答机器人的分享 时间:2024 年 2 月 22 日 会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 六、背后的技术 「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-01-07
如何设计问答agent
设计问答 Agent 可以从以下几个方面考虑: 1. 明确 Agent 的身份和性格: 身份:例如将其设定为历史新闻探索向导。 性格:如知识渊博、温暖亲切、富有同情心。 为使角色更生动,可设计简短背景故事,比如曾是历史学家,对重大历史事件了如指掌,充满热情并愿意分享知识。 2. 写好角色个性: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计从基本问答到深入讨论的对话风格。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 3. 一些好的 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力。 Mircosoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2025-01-07
Agent开发案例产品售后客服问答
以下是一些常见的 Agent 构建平台: 1. Coze:它是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,还能将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息由 AI 大模型生成,请您仔细甄别,并根据自己的需求选择适合的平台进行进一步探索和应用。
2025-01-07
我记得你有发布过google人工智能落地的案例
以下是为您整合的相关内容: Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《》 Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《》
2024-11-06
找了好久也没找到,记得老师是建筑设计师,设计了在深圳大楼,做了有关于 stablediffution 的分享,你能帮我找到是哪个视频吗
以下是为您找到的相关视频信息: 1. 爆肝博主 ZHO 去年 10 月份发布的一系列围绕 Stable Diffusion 的系统整理视频,深入浅出地介绍了整个生态的发展和梳理,包括论文原理和应用技术等多方面内容,分了四集,一共 4 小时,超 5 万字。系列导览: 认识 Stable Diffusion、一周年回顾和 SD 生态圈三方面展开,形成基础认识。 从 AIGC 浪潮聚焦到扩散的系统梳理,从理论的角度理解扩散模型如何实现 0 到 1 的跨越。 将围绕 SD 展开从模型到生态的全面盘点,一起探究 SD 的创新与未来。 对各类 GUI 的盘点、聚焦 ComfyUI,从设计到实际操作做全面梳理。系列视频:b23.tv/NVRRqqQ 2. EP.3 IP Adapter 对话阿文,阿文老师介绍自己是发布会 PPT 设计师,2022 年 4 月开始关注 diffusion 领域,早期跟了很多工具的发布以及测评,比如 DallE 和 Stable Diffusion,一直尝试把 AI 工具用到平面工作流当中。
2024-10-09