以下是关于搜索模型搭建的相关知识:
所有第一代模型(以-001结尾的模型)都使用GPT-3分词器,最大输入为2046个分词。第一代嵌入由五个不同的模型系列生成,这些模型系列针对三个不同的任务进行了调整:文本搜索、文本相似性和代码搜索。搜索模型成对出现:一个用于短查询,一个用于长文档。每个系列最多包括四种质量和速度不同的型号:Davinci是最有能力的,但比其他型号更慢且更昂贵。Ada的能力最差,但速度更快,成本更低。相似性嵌入相似性模型最擅长捕捉文本片段之间的语义相似性。text-similarity-babbage-001 text-similarity-curie-001 text-similarity-davinci-001|文本搜索嵌入文本搜索模型有助于衡量哪些长文档与短搜索查询最相关。使用了两种模型:一种用于嵌入搜索查询,一种用于嵌入要排名的文档。最接近查询嵌入的文档嵌入应该是最相关的。text-search-ada-query-001 text-search-babbage-doc-001 text-search-babbage-query-001 text-search-curie-doc-001 text-search-curie-query-001 text-search-davinci-doc-001 text-search-davinci-query-001|代码搜索嵌入与搜索嵌入类似,有两种类型:一种用于嵌入自然语言搜索查询,一种用于嵌入要检索的代码片段。code-search-ada-text-001 code-search-babbage-code-001 code-search-babbage-text-001|对于-001文本嵌入(不是-002,也不是代码嵌入),我们建议将输入中的换行符(\n)替换为单个空格,因为当存在换行符时我们已经看到更糟糕的结果。
我们需要进行部署的有三大部分1、本地部署大语言模型2、本地部署FastGPT+OneAPI3、本地部署HOOK项目或COW[heading1]一、部署大语言模型[content]一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。
1.信息筛选与确认:2.首先,系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容。这通常涉及到对信息的来源、时效性和相关性进行验证。3.消除冗余:4.在多个文档或数据源中,可能会有重复的信息。系统需要识别和去除这些冗余内容,以防在生成回答时出现重复或相互矛盾的信息。5.关系映射:6.系统将分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。这有助于构建一个结构化的知识框架,使得信息在语义上更加连贯。7.上下文构建:8.将筛选和结构化的信息组织成一个连贯的上下文环境。这通常包括对信息进行排序、归类和整合,使其形成一个统一的叙述或解答框架。9.语义融合:10.在必要时,系统可能会进行语义融合,即合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。11.预备生成阶段:12.最后,整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。④、大模型生成回答1、生成器:最终全新的上下文被一起传递给大语言模型。随后,大语言模型(LLM)根据提供的信息来回答问题。因为这个上下文包括了检索到的信息,因此大语言模型相当于同时拿到了问题和参考答案,通过LLM的全文理解,最后生成一个准确和连贯的答案。