Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

解释AI中连续问答时,为什么有时候

Answer

在 AI 中进行连续问答时,存在以下情况:

  1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT-4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。
  2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。
  3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。
  4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
Content generated by AI large model, please carefully verify (powered by aily)

References

如何使用 AI 来做事:一份带有观点的指南

为了回应你的答案,AI很容易“产生幻觉”并生成看似合理的事实。它可以生成完全错误的内容,而且非常令人信服。让我强调一下:AI连续且良好地撒谎。它告诉你的每一件事或信息可能都是不正确的。你需要检查所有的东西。你需要全部检查一下。特别危险的是要求它为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)。因为GPT-4通常更加扎实,因为Bing的互联网连接意味着它实际上可以拉入相关事实。[这是一份避免幻觉的指南](https://oneusefulthing.substack.com/p/how-to-get-an-ai-to-lie-to-you-in),但它们不可能完全消除。另请注意,人工智能不会解释自己,它只会让你认为它解释了自己。如果你要求它解释它为什么写东西,它会给你一个完全编造的合理答案。当你询问它的思考过程时,它并没有审查自己的行动,它只是生成听起来像它在做这样的文本。这使得理解系统中的偏见非常困难,尽管这些偏见几乎肯定存在。它也可以被不道德地用来操纵或作弊。你对这些工具的输出负责。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

问:Chain of Density 是什么

【GPT】您指出了一个很好的观察。许多写作和沟通的基本原则在不同的情境中都是适用的,不仅仅是在撰写“连续提示”时。这些原则,如明确性、逻辑性和简洁性,对于任何形式的沟通都是至关重要的。但是,当我们谈到撰写“连续提示”时,这些原则变得尤为重要,因为AI的回应质量和相关性在很大程度上依赖于提示的质量。一个清晰、具有逻辑性的连续提示可以更有效地指导AI,尤其是在需要多步骤或多阶段的输出时。以下是为什么这些原则在撰写“连续提示”时特别重要的原因:1.明确的目标:在连续提示中,每一步的目的都应该非常明确,以确保整体的输出是连贯的。2.逻辑性:连续提示要求AI按照一定的顺序或结构生成输出。任何不清晰或不逻辑的提示都可能导致不符合期望的结果。3.分步骤:与一次性的、独立的提示不同,连续提示需要在每一步都提供明确的指导,以确保整体的流程是顺畅的。4.考虑变量:因为连续提示经常涉及多步骤的过程,所以考虑可能会影响结果的所有变量是非常重要的。当然,这些原则在其他情境中也是有用的,但在撰写“连续提示”时,它们可能需要更细致的考虑和应用。【用户】是的,并且这些针对CoD提示的撰写原则,我认为在CoT上也一样适用,目标明确、逻辑性、分步骤、考虑变量,对吧?【GPT】您完全正确。事实上,这些原则不仅适用于CoD和CoT,还适用于ToT或其他任何形式的提示结构。当目的是通过提示指导AI产生特定的输出时,这些原则都是非常重要的。

Others are asking
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19
我想当一名ai产品经理 我该从哪学起
如果您想成为一名 AI 产品经理,可以从以下几个方面学起: 1. 掌握算法知识: 理解产品核心技术,了解基本的机器学习算法原理,有助于做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 2. 学习相关案例:可以参考一些成功的 AI 产品经理的经验,比如 Kelton 作为 AIPM 一枚,深耕 NLP 方向 2 年,从 0 1 打造过两款 AIGC 产品,还完成过 LLM 评测体系的搭建。 3. 了解技术原理与框架: 如思维链,谷歌在 2022 年论文提到其能显著提升大语言模型在复杂推理的能力。 了解 RAG(检索增强生成),将外部知识库切分成段落后转成向量存于向量数据库。 学习 PAL(程序辅助语言模型)和 ReAct 框架等。 同时,建议您关注或直接阅读技术论文,虽然有难度,但完成一定知识储备后,可借助 AI 辅助阅读。也可以通过一些通俗易懂的科普内容入门,比如相关的科普视频。
2025-02-19
哪款AI好用
以下是为小白推荐的一些好用的 AI 产品: 1. Notion AI(免费可用):可在笔记和文档中应用 AI 的力量,让工作更迅速,写作更出色,思考更伟大。 2. Guidde AI(免费可用):是一款生成式 AI 平台,使团队能够以 11 倍的速度传递专业知识,与客户或员工共享。 3. Arc Max:用 AI 优化浏览体验,在任何网页寻求 AI 辅助,智能标签页&下载重命名,集成 ChatGPT 等功能。 4. Trickle(免费可用):用 AI 将截图转换成可搜索的珍贵资源,帮助总结和整理截图,提取洞察以便于搜索和查询。将视觉混乱的图片转化为智能档案,允许用户截取任何内容,并在以后轻松地检索和使用其内容。 需要注意的是,以上推荐带有强烈主观性,只给大家一些参考意见。说的有失偏颇也请大家原谅。同时,有些个人感觉不好用/不常用/没用过的产品就不在推荐范围内。
2025-02-19
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19
有没有把视频截取成图片的或者剪辑的AI工具
以下是一些可以将视频截取成图片或进行剪辑的 AI 工具: 1. Clipfly :可用于视频编辑与合成。 2. VEED.IO :能帮助进行视频编辑。 3. MMVid :这是一个集成的视频理解系统,能处理和理解长视频内容并进行问答,可应用于快速的视频剪辑等场景。 4. 可灵 AI :例如通过其图生视频功能进行相关操作。 此外,在进行视频剪辑时,还可以使用剪映等工具,具体步骤如下: 1. 在右上方点击抠像按钮。 2. 鼠标选中要处理的素材。 3. 把带绿幕的素材先放入下面主视频轨道。 4. 导入需要的素材,将扣好的绿幕和下方黑色咖啡的素材合成一个片段,最后点击新建的复合片段,调整对应的参数。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-19
目前最强大的ai是什么
目前,很难明确指出哪一个是最强大的 AI。在大语言模型方面,OpenAI 的 GPT4.0 功能强大,GPT3.5 也引发了当前的 AI 热潮。微软的 Bing 混合使用 GPT4 和 3.5,常率先推出新功能且连接到互联网。谷歌的 Bard 由 PaLM 2 等基础模型驱动,虽有改进但仍有待提升。Anthropic 发布的 Claude 2 具有较大的上下文窗口,且不太可能恶意行事。此外,Open AI 发布的 Code Interpreter 也是非常强大的 ChatGPT 版本。但不同的 AI 在不同的应用场景和任务中可能表现出不同的优势,其强大程度也会因评估标准和具体需求的不同而有所差异。
2025-02-19
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
怎么做一个知识库智能问答机器人?
要做一个知识库智能问答机器人,主要基于大模型的 RAG 机制,具体步骤如下: 1. 理解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成在巨大图书馆里找相关书籍,再基于书籍信息给出详细回答,这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 2. 创建知识库:创建包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传文章内容,并陆续将社区其他板块的文章和资料导入。 3. 设计 Bot:在设计中添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能利用好知识库返回的内容进行结合回答。 此外,在飞书中,还可以利用飞书智能伙伴创建平台(Aily)来搭建 FAQ 机器人,它是飞书团队旗下的企业级 AI 应用开发平台,能为企业提供简单、安全且高效的环境,帮助轻松构建和发布 AI 应用。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
waytoAGI知识库智能问答机器人是如何实现的
waytoAGI 知识库智能问答机器人的实现方式如下: 基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话等任务。 在飞书 5000 人大群里内置,根据通往 AGI 之路的文档及知识进行回答。使用方法为在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 其具备多种功能,如自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等。 搭建过程包括介绍 WaytoAGI 社区的成立愿景和目标、利用 AI 技术帮助用户检索知识库内容、引入 RAG 技术、介绍基于飞书的知识库智能问答技术的应用场景和实现方法、使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法等。
2025-02-12
如何使用钉钉中的知识库构建智能问答机器人
以下是使用钉钉中的知识库构建智能问答机器人的步骤: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 配置极简未来(Link.AI)平台:按照官方教程操作,教程地址为 https://docs.linkai.tech/platform/createapp ,学习补充可参考 https://docs.linkai.tech/platform/quickstart 。 教程中的应用是创建一个具体的 AI 问答机器人应用。 教程中的知识库是给绑定到指定问答机器人的资料数据集,让机器人基于这些内容回答问题。 知识库应用中的应用设定是给 AI 机器人的提示词内容或者人设,关于提示词可查看教程 https://waytoagi.feishu.cn/wiki/OqJQwzq2wi9EIOkFtFkclM24nSe 。 创建成功的 AI 应用,记住应用的应用 ID,用于后续对接微信聊天机器人。 生成 API Key 用于后续功能对接,地址为 https://linkai.tech/console/interface ,点击创建 API Key 并记住。 2. 用 Coze 免费打造自己的微信 AI 机器人: 设计 AI 机器人: 开始节点和结束节点会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,知识库输入引用开始节点的变量“Question”,点击“+”号选择之前创建好的知识库,将知识库右侧节点与结束节点左侧连起来。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,在输出变量那里定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,回答模式选择使用设定的内容直接回答。 试运行测试:点击右上角“试运行”,输入问题如“AIGC 课件”,点击右下角“运行”,查看工作流每一步的详细输入和输出。
2025-02-12
问答方式如何使用好大模型
以下是关于如何使用好大模型的一些指导: 1. 本地部署资讯问答机器人: 加载所需的库和模块,如用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,可通过指定的 RSS 订阅 url 提取,如需多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成小块,并附带相关元数据,最终合并成列表用于后续处理。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型放置在指定路径,通过函数利用 FAISS 创建高效向量存储。 Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。提供模型库,用户可从中下载不同模型,还支持自定义模型,如修改温度参数等,同时提供 REST API 用于运行和管理模型及与其他应用集成,社区贡献丰富。需先安装,可通过 https://ollama.com/download/ 下载,安装后确保后台服务已启动。 2. 编写清晰的说明: 在 OpenAI 官方说明文档中提到的“官方最佳实践”为用户提供了若干策略。 策略一是编写清晰的说明,在询问中包含详细信息,多说一些内容,多提供一些信息,能有效提高大模型回复的质量和丰富性。通过多个具体例子展示了提供更多细节能得到更符合预期的回答。
2025-02-11
解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了
在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因: 1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。 2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。 3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。 4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。 为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。
2025-01-17
请简单解释或者举例DeepSeek与ChatGPT的区别,原理
DeepSeek 与 ChatGPT 的区别主要体现在以下方面: 1. 在 App Store 排名上,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部和市场投放,完全依靠技术实力和口碑获得用户认可。 3. 性能与成本方面,DeepSeek R1 的效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一。 4. 开源与创新方面,DeepSeek R1 开源让行业认知整体拉齐,得到全世界尊重和喜爱。 5. 训练方式上,DeepSeek R1 的创新模型 R1 Zero 跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。 6. 在回答用户问题时,DeepSeek R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,以提升最终回答的质量,而 ChatGPT 可能没有这种特定的机制。 原理方面:DeepSeek R1 与 ChatGPT 同属于基于强化学习 RL 的推理模型,但在具体的训练和推理过程中可能存在差异。例如,DeepSeek R1 在训练时可能有独特的方法和策略,使其在性能和表现上与 ChatGPT 有所不同。
2025-02-11
langchain 大白话解释一下给我听
LangChain 是一个用于构建高级语言模型应用程序的框架。它能简化开发人员使用语言模型构建端到端应用程序的流程,提供了一系列工具、组件和接口,让创建由大型语言模型和聊天模型支持的应用程序更轻松。 其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是一系列组件或其他链的组合,用于完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,方便开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 3. 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策,并根据用户输入调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,能与外部数据源交互收集数据,还提供内存功能维护状态。它旨在为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。
2025-02-08
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16