Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

解释AI中连续问答时,为什么有时候

Answer

在 AI 中进行连续问答时,存在以下情况:

  1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT-4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。
  2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。
  3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。
  4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
Content generated by AI large model, please carefully verify (powered by aily)

References

如何使用 AI 来做事:一份带有观点的指南

为了回应你的答案,AI很容易“产生幻觉”并生成看似合理的事实。它可以生成完全错误的内容,而且非常令人信服。让我强调一下:AI连续且良好地撒谎。它告诉你的每一件事或信息可能都是不正确的。你需要检查所有的东西。你需要全部检查一下。特别危险的是要求它为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)。因为GPT-4通常更加扎实,因为Bing的互联网连接意味着它实际上可以拉入相关事实。[这是一份避免幻觉的指南](https://oneusefulthing.substack.com/p/how-to-get-an-ai-to-lie-to-you-in),但它们不可能完全消除。另请注意,人工智能不会解释自己,它只会让你认为它解释了自己。如果你要求它解释它为什么写东西,它会给你一个完全编造的合理答案。当你询问它的思考过程时,它并没有审查自己的行动,它只是生成听起来像它在做这样的文本。这使得理解系统中的偏见非常困难,尽管这些偏见几乎肯定存在。它也可以被不道德地用来操纵或作弊。你对这些工具的输出负责。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

问:Chain of Density 是什么

【GPT】您指出了一个很好的观察。许多写作和沟通的基本原则在不同的情境中都是适用的,不仅仅是在撰写“连续提示”时。这些原则,如明确性、逻辑性和简洁性,对于任何形式的沟通都是至关重要的。但是,当我们谈到撰写“连续提示”时,这些原则变得尤为重要,因为AI的回应质量和相关性在很大程度上依赖于提示的质量。一个清晰、具有逻辑性的连续提示可以更有效地指导AI,尤其是在需要多步骤或多阶段的输出时。以下是为什么这些原则在撰写“连续提示”时特别重要的原因:1.明确的目标:在连续提示中,每一步的目的都应该非常明确,以确保整体的输出是连贯的。2.逻辑性:连续提示要求AI按照一定的顺序或结构生成输出。任何不清晰或不逻辑的提示都可能导致不符合期望的结果。3.分步骤:与一次性的、独立的提示不同,连续提示需要在每一步都提供明确的指导,以确保整体的流程是顺畅的。4.考虑变量:因为连续提示经常涉及多步骤的过程,所以考虑可能会影响结果的所有变量是非常重要的。当然,这些原则在其他情境中也是有用的,但在撰写“连续提示”时,它们可能需要更细致的考虑和应用。【用户】是的,并且这些针对CoD提示的撰写原则,我认为在CoT上也一样适用,目标明确、逻辑性、分步骤、考虑变量,对吧?【GPT】您完全正确。事实上,这些原则不仅适用于CoD和CoT,还适用于ToT或其他任何形式的提示结构。当目的是通过提示指导AI产生特定的输出时,这些原则都是非常重要的。

Others are asking
有哪些比较好用的AI价格比较插件
以下是一些比较好用的 AI 相关价格插件: AiTC 车辆执行项:由吉利研究院提供。根据输入车辆操作参数,输出车辆操作结果,包含空调、后视镜等多种执行项。链接: 懂车帝:由懂车帝提供。SecondHandCar 是一款专为二手车市场设计的信息查询工具,可对二手车进行深度的数据挖掘和分析。CarSeries 可以查询新车或特定车系信息。链接: 此外,在价格对比方面: 主流 AI 视频会员价格对比中,可灵最近开放全球价格体系,中国以外可付美金享受。价格情况为 Runway 最贵,Haiper 其次,Luma 中规中矩,可灵最便宜。链接:
2025-01-18
AI做笔记
以下是关于用 AI 做笔记的相关内容: 即刻用户拐子狼分享的工作流:用飞书妙计将音频转换为文字,找不到合适封面图时使用 Midjourney 制作,用 Raycast AI 初步检索关键词,用 Notion AI 总结全文内容。将整篇笔记分为 AI 总结、ShowNotes、节目文字版和笔记四个部分,笔记部分对节目提及的关键词做拓展阅读,若解读品牌会放上该品牌在节目所讨论年份的财报。 相关案例: 学习:用 AI 做播客笔记,干货为主的播客都可尝试,以后也许按此方式做英文播客笔记顺便学英语。 教学:帮助学生做好组会准备,只使用了 Claude+Gamma.app,Claude 节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt 2 小时帮同学干完 3 篇调研报告,先确定调研报告大纲目录。 做调研:用 ChatGPT 做调研,研究其帮助创建用户体验调查或其他调查的方法。 《雪梅 May 的 AI 学习日记》: 第一阶段迈出第一步,看书听课进社区。 DAY8 看完李宏毅的 AI 课程,全程做笔记,认为课程能看懂,需要系统性了解生成式人工智能底层原理。 DAY9 了解小红书的 AI 博主,认为小红书内容产出方式费时间,现阶段要更深入了解 AI 而非做皮毛信息加工,因 AI 加工信息容易,只做信息加工易被替代。
2025-01-18
知识库的实验数据,AI能关联分析思考吗?
目前的 AI 技术在一定程度上能够对知识库中的实验数据进行关联分析和思考。AI 具备处理和分析大量数据的能力,通过运用机器学习和数据挖掘算法,可以发现数据中的模式、关系和趋势。然而,AI 的分析能力取决于数据的质量、特征工程的有效性以及所采用的算法和模型的适用性。在复杂和不确定的情况下,AI 的分析结果可能存在一定的局限性,需要人类的进一步审查和判断。
2025-01-18
怎么从头学ai
以下是从头学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-18
国内ai应用有哪些
以下是国内的一些 AI 应用: 1. AI 儿童安全座椅推荐系统:使用数据分析、机器学习技术,已有产品如宝宝树安全座椅推荐,市场规模达数亿美元,能为家长推荐合适的儿童安全座椅。宝宝树根据儿童年龄、体重等信息,利用 AI 推荐符合安全标准的儿童安全座椅。 2. AI 汽车保养套餐推荐系统:运用数据分析、机器学习技术,途虎养车保养推荐是已有产品,市场规模达数十亿美元,可根据车辆情况推荐保养套餐。途虎养车利用 AI 分析车辆型号、行驶里程等,为用户推荐合适的保养套餐,如更换机油、滤清器等。 3. AI 物流快递柜管理系统:采用数据分析、物联网技术,丰巢快递柜管理系统是已有产品,市场规模达数十亿美元,能够优化快递柜使用效率。丰巢快递柜利用 AI 和物联网技术管理柜子的使用情况,如分配柜子、通知取件等,提高快递配送效率。 4. AI 招聘面试模拟平台:借助自然语言处理、机器学习技术,智联招聘面试模拟功能是已有产品,市场规模达数亿美元,帮助求职者进行面试模拟。智联招聘的面试模拟功能利用 AI 模拟面试官提问,为求职者提供面试练习和反馈。 5. AI 房地产装修设计平台:通过图像生成、机器学习技术,酷家乐装修设计软件是已有产品,市场规模达数十亿美元,为用户提供装修设计方案。酷家乐利用 AI 生成各种装修设计方案,用户可根据自己的喜好进行选择和调整。 6. AI 摄影参数调整助手:利用图像识别、数据分析技术,一些摄影 APP 的参数调整功能是已有产品,市场规模达数亿美元,可根据场景自动调整摄影参数。一些摄影 APP 利用 AI 分析拍摄场景,自动调整相机参数,如曝光、对焦、感光度等。 7. AI 音乐情感分析平台:运用机器学习、音频处理技术,音乐情感分析软件是已有产品,市场规模达数亿美元,能分析音乐的情感表达。音乐情感分析软件利用 AI 分析音乐的旋律、节奏、歌词等,判断音乐的情感倾向,如快乐、悲伤、愤怒等。 8. AI 家居智能照明系统:借助物联网技术、机器学习技术,小米智能照明系统是已有产品,市场规模达数十亿美元,实现家居照明的智能化控制。小米智能照明系统利用 AI 和物联网技术,根据用户的习惯和环境变化自动调整灯光亮度和颜色。 9. AI 金融风险预警平台:采用数据分析、机器学习技术,金融风险预警软件是已有产品,市场规模达数十亿美元,提前预警金融风险。金融风险预警软件利用 AI 分析金融市场数据,提前预警可能出现的风险,如股市下跌、汇率波动等。 10. AI 旅游路线优化平台:通过数据分析、自然语言处理技术,马蜂窝路线优化功能是已有产品,市场规模达数亿美元,根据用户需求优化旅游路线。马蜂窝根据用户的时间、预算、兴趣等因素,利用 AI 优化旅游路线,提高旅行体验。 11. AI 菜谱口味调整工具:运用自然语言处理、数据分析技术,下厨房口味调整功能是已有产品,市场规模达数亿美元,根据用户反馈调整菜谱口味。下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等。 12. AI 语言学习纠错平台:借助自然语言处理、机器学习技术,英语流利说纠错功能是已有产品,市场规模达数十亿美元,帮助语言学习者纠正错误。英语流利说通过 AI 技术识别用户在语言学习中的发音、语法等错误,并提供纠正建议和练习。 13. AI 电影剧情分析系统:采用数据分析、自然语言处理技术,豆瓣电影剧情分析工具是已有产品,市场规模达数亿美元,分析电影剧情,提供深度解读。豆瓣电影的剧情分析工具利用 AI 对电影剧情进行分析,为用户提供剧情解析、主题探讨等内容。 14. AI 办公文件分类系统:通过数据分析、机器学习技术,腾讯文档分类功能是已有产品,市场规模达数亿美元,自动分类办公文件,方便管理。腾讯文档利用 AI 对用户上传的文件进行分类,如合同、报告、方案等,提高文件管理效率。 15. AI 美容护肤方案定制平台:利用图像识别、数据分析技术,美丽修行定制方案功能是已有产品,市场规模达数亿美元,根据用户肤质定制护肤方案。美丽修行根据用户上传的照片和肤质信息,利用 AI 定制个性化的护肤方案,包括产品推荐和使用顺序。
2025-01-18
有哪些优秀的AI copilot?
以下是一些优秀的 AI copilot: 1. 对于编程辅助方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 在 Agent 构建平台方面: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作等,并能部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 3. 此外,还有一些新的 AI 产品和网站,如: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于解释科学文献中的文本、数字和表格,输出内容更精确。链接:https://typeset.io/ AIPRM for ChatGPT:SEO Prompt 模板插件,支持 ChatGPT 和 Midjourney 等。链接:https://www.aiprm.com/ Teamsmart:有趣的文档助手,根据不同职业/技能提供不同能力点的机器人。链接:https://www.teamsmart.ai/ Boring Report:应对标题党的神器,去除文章夸张表述,保留客观事实。
2025-01-18
解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了
在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因: 1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。 2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。 3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。 4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。 为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。
2025-01-17
问答对挖掘
以下是关于提升问答效果的技巧: 1. 智能问答的原理和注意事项:在召回排序的逻辑中,文档总标题在相似度计算中权重较高。若文档总标题与用户问题吻合,相关片段在排序中更靠前,送入大模型的可能性更大。但正文与总标题相关性不高可能导致回答不准确、答非所问。 2. 编写文档的注意事项: 文档的标题内容需与正文有强相关性。 不同的知识点尽量分段书写,合理控制段落长度。不同主题通过子标题区分,子标题下正文每个段落对应一个明确知识点,避免多个知识点混合,以保证每个片段主题鲜明,在用户提问相关问题时,该片段在召回排序中更靠前。同时,每个段落尽量不超过 500 字,过长段落可能在文档分割时被切割成多个片段,打散段落主题,导致最终召回的片段内容不全、答案不够全面。 3. 对于经常被问到的内容,可写成问答对(FAQ)格式。问答对包含问题描述,用户提出相关问题时,包含该问答对的片段在召回排序中非常靠前,更可能被送入大模型,给出准确回答。样例参考可查看相关示例。
2025-01-11
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
智能问答机器人
以下是关于智能问答机器人的相关信息: 一、关于“我是谁” 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话、信息获取、协助创作等任务。 二、使用方法 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在),点击加入,直接@机器人即可。 2. 在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 在飞书 5000 人大群里,内置了智能机器人「waytoAGI 知识库智能问答」,基于飞书 aily 搭建。您只需在飞书群里发起话题时候即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 三、做问答机器人的原因 1. 整个知识库内容庞大且丰富,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义价值。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 四、飞书群问答机器人的功能 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 五、搭建问答机器人的分享 时间:2024 年 2 月 22 日 会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 六、背后的技术 「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-01-07
如何设计问答agent
设计问答 Agent 可以从以下几个方面考虑: 1. 明确 Agent 的身份和性格: 身份:例如将其设定为历史新闻探索向导。 性格:如知识渊博、温暖亲切、富有同情心。 为使角色更生动,可设计简短背景故事,比如曾是历史学家,对重大历史事件了如指掌,充满热情并愿意分享知识。 2. 写好角色个性: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计从基本问答到深入讨论的对话风格。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 3. 一些好的 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力。 Mircosoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2025-01-07
Agent开发案例产品售后客服问答
以下是一些常见的 Agent 构建平台: 1. Coze:它是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,还能将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息由 AI 大模型生成,请您仔细甄别,并根据自己的需求选择适合的平台进行进一步探索和应用。
2025-01-07
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
六个子主题中:“不伤害”;比例;非歧视;可持续性;人类与人工智能互动中的人类决定;透明度和可解释性。
以下是关于欧洲议会和欧盟理事会对人工智能规定的相关内容: 1. 基于风险的方法是一套成比例和有效的约束性规则的基础,回顾委员会任命的独立人工智能高级别专家组 2019 年制定的《值得信赖的人工智能的伦理准则》很重要。其中包含七项不具约束力的人工智能伦理原则,有助于确保人工智能值得信赖且符合伦理道德。 人类主体和监督:人工智能系统的开发和使用应为人服务,尊重人的尊严和自主权,运行方式可由人类控制和监督。 技术稳健性和安全性:开发和使用方式应在出现问题时保持稳健,抵御试图改变系统使用或性能的行为,减少意外伤害。 隐私和数据治理:符合现有隐私和数据保护规则,处理的数据质量和完整性符合高标准。 透明度:开发和使用方式应允许适当的可追溯性和可解释性,让人类意识到交流或互动,并告知部署者系统的能力和局限性以及受影响者的权利。 多样性、非歧视和公平:开发和使用方式应包括不同参与者,促进平等获取、性别平等和文化多样性,避免歧视性影响和不公平偏见。 社会和环境福祉:未具体阐述。 问责制:未具体阐述。 2. 评估人工智能系统潜在风险时应考虑的因素包括: 人工智能系统的预期目的。 已使用或可能使用人工智能系统的程度。 人工智能系统处理和使用的数据的性质和数量,特别是是否处理特殊类别的个人数据。 人工智能系统自主性的程度,以及人类推翻可能导致潜在伤害的决定或建议的可能性。 人工智能系统的使用在多大程度上已经对健康和安全造成了损害,对基本权利产生了不利的影响,或在多大程度上引起了人们对这种损害或不利影响的可能性的严重关注,例如相关报告或指控所表明的情况。 这种损害或不利影响的潜在程度,特别是其严重程度及其影响多数人或不成比例地影响特定群体的能力。 可能受到伤害或不利影响的人在多大程度上依赖人工智能系统产生的结果,特别是由于实际或法律原因而无法合理地选择不接受该结果。 权力不平衡的程度,或可能受到伤害或不利影响的人相对于人工智能系统部署者而言处于弱势地位的程度,特别是由于地位、权力、知识、经济或社会环境或年龄等原因。 人工智能系统产生的结果在多大程度上易于纠正或逆转,同时考虑到现有的纠正或逆转的技术解决方案,其中对健康、安全、基本权利有不利影响的结果不应被视为易于纠正或逆转。 部署人工智能系统对个人、群体或整个社会的好处的程度和可能性,包括对产品安全的可能改进。 现有欧盟立法在多大程度上规定了相关内容。
2025-01-11
解释AI大模型和各种AI网站的关系
AI 大模型是一种具有大规模参数和强大能力的模型。 AI 网站通常会提供各种与 AI 相关的服务和工具,例如: 1. 提供多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN 等。 2. 包含模型社区,为大模型提供数据、企业模型和算力服务,有按任务划分的模型库、数据集和在线应用供体验。 3. 拥有 AI 工程平台,对模型和应用有要求,像 define 是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。 总之,AI 网站是展示和应用 AI 大模型的平台,通过这些网站,用户可以接触和使用到基于 AI 大模型开发的各种功能和服务。
2025-01-07
用一句话解释什么是controlnet
ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型(如 Stable Diffusion)结合,通过引入如涂鸦、边缘图等多种类型的额外条件输入来控制 AI 绘画生成过程,其工作原理是在 Stable Diffusion 模型中添加辅助模块,实现对生成图像的精细控制,还具有训练鲁棒性、兼容性与迁移能力,不仅用于 AI 绘画,还可用于图像编辑等多种计算机视觉任务。使用时需注意相关设置和安装,如确保路径同步、选择合适的预处理器和模型等。
2024-12-23