Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

你可以教我怎么制作一个AI模型吗

Answer

制作一个 AI 模型通常包括以下步骤:

  1. 收集海量数据:例如研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据,就像让孩子阅读大量书籍等资料一样。
  2. 预处理数据:对收集到的数据进行清理和组织,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段,类似于为孩子整理适合其年龄和学习能力的资料。
  3. 设计模型架构:为 AI 模型设计“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这就像为孩子设计学习计划。
  4. 训练模型:让 AI 模型“阅读”提供的数据,这个过程称为“训练”,例如模型会反复阅读数据,尝试预测句子中的下一个词。

此外,您还可以使用 Generative AI Studio 快速制作原型和自定义生成式 AI 模型,无需代码或代码量少。如果您是数据科学家或 ML 开发人员,想要构建和自动化生成 AI 模型,可以从 Model Garden 入手。Model Garden 可让您发现 Google 的基础和第三方开源模型并与之交互,并具有内置的 MLOps 工具来自动化 ML 管道。Generative AI Studio 支持语言、视觉和语音。对于语言,您可以设计一个提示来执行任务和调整语言模型,比如为与您的业务用例相关的任务设计提示,包括代码生成;通过指定指示模型应如何响应的上下文来创建对话;并调整模型,使其更适合您的用例,然后将其部署到端点以获取预测或在提示设计中对其进行测试。设计提示的一种方法是简单地告诉模型您想要什么,提供一个指令,找出和设计最佳输入文本以获得所需响应的过程称为提示设计,这通常涉及大量实验。

开发具有潜在空间层次结构的堆叠 AI 模型,将反映对每个基本元素的理解或预测能力。创建专门从事诸如医疗保健这样特定领域的 AI 可能比创建跨领域的全能 AI 更容易,我们更需要特定领域的专家 AI。同时,应让 AI 接触到现实世界的互动,避免复制危险的偏见。

Content generated by AI large model, please carefully verify (powered by aily)

References

9. 生成式 AI Studio 简介

02:01您可以使用Generative AI Studio快速制作原型和自定义生成式AI模型,无需代码或代码量少。如果您是数据科学家或ML开发人员,想要构建和自动化生成02:14AI模型,可以从Model Garden入手。Model Garden可让您发现Google的基础和第三方开源模型并与之交互,并具有内置的MLOps工具来自动化ML管道。02:28在本课程中,您将专注于Generative AI Studio。Generative AI Studio支持语言、视觉和语音。随着您学习本课程,该列表会增加。对于语言,你可以设计一个提示来执行任务和调整语言模型。02:43对于视觉,您可以根据提示生成图像并进一步编辑图像。对于语音,您可以从语音生成文本,反之亦然。让我们关注您可以在Generative AI Studio中使用语言做什么。02:57具体来说,您可以:为与您的业务用例相关的任务设计提示,包括代码生成。通过指定指示模型应如何响应的上下文来创建对话。并调整模型,使其更适合您的用例,这样您就可以03:14将其部署到端点以获取预测或在提示设计中对其进行测试。让我们详细介绍这三个功能。首先是提示设计。要开始试验大型语言模型或LLM,请单击“新提示”。03:32在生成式AI的世界中,提示只是您提供给模型的输入文本的一个奇特名称。您可以将所需的输入文本(例如问题和说明)提供给模型。03:42然后,该模型将根据您构建提示的方式提供响应,因此,您获得的答案取决于您提出的问题。找出和设计最佳输入文本以获得所需响应的过程03:53从模型返回称为提示设计,这通常涉及大量实验。让我们从自由形式的提示开始。设计提示的一种方法是简单地告诉模型您想要什么。04:04换句话说,提供一个指令。例如,生成我去约书亚树国家公园野营旅行所需的物品清单。我们将此文本发送给模型,

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

开发这些具有潜在空间层次结构的堆叠AI模型——复杂数据的简化地图,以帮助AI模型理解模式和关系——将反映对每个基本元素的理解或预测能力。我相信,这最初可能会平行于人类教育和教育范例,但随着时间的推移,它可能会专门发展,以在AI学习中培养新型的专业知识。这些堆叠模型可能会以与人脑皮层类似的方式发展。但是,与人类拥有视觉皮层和运动皮层不同,AI可能会拥有生物皮层和药物设计皮层——在这两种情况下,都是针对特定任务专门设计的神经架构。具有讽刺意味的是,创建专门从事诸如医疗保健这样的特定领域的AI可能比创建更接近HAL 9000的东西——具有跨领域的典型人类水平知识——更容易。实际上,我们更需要特定领域的专家AI,而不是一个能做任何普通人能做的事情的全能AI。我预计不仅会创造一个专家AI,而且会创造许多专家AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时这些模型可以提供第二个(或第三个、第四个)意见。同时,我们必须将AI从其在线基础上摘下,并将其投入到原子的世界中。我们应该让我们最熟练的人类专家配备可穿戴设备,以收集微妙的、现实世界的互动,供AI学习,就像我们即将崭露头角的学术和行业明星一样。解决健康和医学领域最复杂和不确定的问题在位元的世界中根本不存在。必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。

Others are asking
即梦AI生图教程
以下是即梦 AI 生图的教程: 1. 打开即梦 AI 官网:https://jimeng.jianying.com/aitool/home 。 2. 点击 AI 作图中的图片生成。 3. 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 此外,还有即梦 AI 智能画布的相关案例,比如匡威鞋的春季海报: 以匡威春季上新为背景,将鞋子以夸张的比例融入上海城市中,体现运动和城市生活结合的“青春、城市、活力”主题。 制作步骤如下: |步骤|执行|截图| |||| |第 1 步|找了一个目标效果图| | |第 2 步|把鞋子用即梦智能画布抠图,用画布模式放到外滩背景上| | |第 3 步|使用画布模式 轮廓边缘,做融合、扩图、局部重绘,把楼绘制的好看一点| | |第 4 步|用醒图 App 增加文案| | 三步轻松上手,设计从未如此简单!释放你的创造力,成为自己心中的设计大师!快来一起玩 AI,探索 AI 的无限可能!关注「烧拍 AI」了解更多 AI 资讯!
2024-12-26
列车国内最强的图像生成类AI并进行简单介绍和基础教程操作
目前国内图像生成类 AI 有很多优秀的产品,难以明确指出哪一个是最强的。一些常见且表现出色的图像生成类 AI 包括百度的文心一格、字节跳动的云雀等。 以文心一格为例,其基础操作教程通常如下: 1. 访问文心一格的官方网站。 2. 注册并登录账号。 3. 在操作界面中输入您想要生成图像的描述关键词。 4. 选择生成图像的风格、尺寸等参数。 5. 点击生成按钮,等待系统生成图像。 不同的图像生成类 AI 可能在操作细节上有所差异,但大致流程相似。您可以根据自己的需求和使用体验选择适合您的图像生成类 AI 工具。
2024-12-26
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-26
这几天ai领域有没有突破性的论文
以下是这几天 AI 领域的一些相关论文和研究成果: 1. 《山姆·奥特曼传(二):OpenAI 的第一次内斗》中提到,2017 年 Google Brain 团队撰写的论文《Attention is All You Need》介绍了 Transformer 架构,彻底改变了 AI 领域的格局。OpenAI 在其技术领袖伊利亚的推动下,基于 Transformer 架构开发了 GPT 系列模型。 2. 《2024 人工智能报告》中包含了关于 AI 在未来一年的 10 个预测,如一个主权国家向美国大型人工智能实验室投资 100 亿美元以上需要国家安全审查,没有任何编码能力的人独自创建的应用程序或网站将会迅速走红等。 3. 《入门经典必读》中指出人工智能的研究正在以指数级别的速度增长,文中分享了一份用于更深入了解现代 AI 的精选资源列表,其中提到从 2017 年谷歌发布的“Attention is All You Need”这篇开启了生成 AI 时代的论文开始的一系列里程碑式研究成果。
2024-12-26
AI根据素材生成视频
以下是关于 AI 根据素材生成视频的相关信息: 在 Adobe 产品的 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建内容的随机性。如果使用相同的种子、提示和控制设置,可以重新生成类似的视频剪辑。选择“Generate”即可。 如果想用 AI 把小说做成视频,制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 根据视频脚本生成短视频的 AI 工具有多种,以下是一些工具: 1. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,而剪映则可以根据这些脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。这种方法可以快速实现从文字到画面的转化,节省大量时间和精力。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:这是一个 AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户可以提供文本描述,Pictory 将帮助生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. Runway:这是一个 AI 视频创作工具,它能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
AI 生成论文工具
在论文写作领域,AI 技术提供了多方面的辅助,以下是一些相关的工具和使用方法: 一、论文写作的 AI 产品 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、AIGC 论文检测网站 1. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用时上传论文,系统自动分析并提供报告,标示可能由 AI 生成的部分。 2. Copyscape:主要检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 三、利用 AI 写课题的步骤和建议 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。 请注意,AI 工具是辅助手段,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,保证研究质量和学术诚信。
2024-12-26
评测模型生图好坏的标准
评测模型生图好坏的标准主要包括以下几个方面: 1. 模型选择: 基础模型(Checkpoint):生图必需,不同模型适用于不同主题。 Lora:低阶自适应模型,可用于精细控制面部、材质、物品等细节。 ControlNet:控制图片中特定图像,如人物姿态、生成特定文字等。 VAE:类似于滤镜,可调整生图饱和度。 2. 提示词设置: 正向提示词(Prompt):描述想要 AI 生成的内容。 负向提示词(Negative Prompt):描述想要 AI 避免产生的内容。 3. 图片视觉质量: 自然度和美观度是关键指标。 可从数据和训练方法两方面提升,如使用特定的网络结构。 4. 文字生成能力: 目前未有模型具有良好的中文文字生成能力。 提升中文文字生成能力需从多方面准备数据。 需要注意的是,模型生图的效果并非完全由这些标准决定,还可能受到其他因素的影响,需要不断尝试和学习以获得更好的生图效果。
2024-12-26
ocr大模型的原理
OCR 大模型的原理如下: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,一开始给定提示词,大模型结合自身存储的知识进行计算推理,算出下一个单词的概率并输出,新的输出与过去的输入一起成为新的输入来计算下一个词,直到计算出的概率最大时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。预训练需要花费大量时间和算力资源,且在没有其他外部帮助的情况下,大模型所知道的知识信息可能不完备和滞后。 3. 规模效应:参数规模的增加使得大模型实现了量变到质变的突破,最终“涌现”出惊人的“智能”。就像人类自身,无论是物种进化还是个体学习成长,都有类似“涌现”的结构。
2024-12-26
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25
大模型在办公场景的应用
大模型在办公场景有诸多应用,具体如下: 基础办公提效:在 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等方面,能从单个任务 task 到角色 role 再到角色间协同 collaboration 显著提高工作效率。 人力资源管理:覆盖招聘初期(如职位描述生成、简历分析、面试题设计)、员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)以及员工培训与发展各个环节,提高工作效率。 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。 此外,在游戏行业,大模型能降低成本,打造创新玩法,提供更好的游戏体验。如网易推出的首款 AI 手游《逆水寒》,将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特剧情体验,还内嵌了全自动“AI 作词机”。在健身行业,AI 减重顾问既能解决售前客服问题,也能解决学员离开健身营之后的健康监护,提高学员体验。
2024-12-25
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
怎么用AI协助我制作游戏
以下是关于如何用 AI 协助制作游戏的相关内容: 第一阶段: 重点关注工具。生成式人工智能可成为创作者的副驾驶,强化现有 UGC 工作流程。现有 UGC 平台(如 Roblox)会在工具集中添加生成人工智能工具,初创公司会复制现有工作流程并针对生成人工智能优化。此阶段类似互联网和云的起始阶段,从点解决方案工具入手协助创作者。 具体包括: 1. 人工智能+人类共同创作工具,如通过文本、语音或图像提示共同创作资产生成工具(如用于稳定扩散的 ControlNet),用于传说、世界构建、故事情节、任务甚至全分支视觉小说游戏的共同编写工具(如 AI Dungeon 和 Electric Noir 等初创公司的分支叙事游戏),用于编码的副驾驶工具使缺乏经验的创作者更易进行 UGC 游戏开发。 2. 提示共享和搜索,出色的游戏通过提示制作时,让创作者轻松获取最佳提示很重要。提示库庞大嘈杂时,人工智能可帮助语义搜索,找到适合游戏的正确提示。 第二阶段: 会出现新公司,从头重新构想创作工作流程。此阶段的产品可能更像基于生成人工智能构建的引擎或操作系统,而非工具或平台,会出现全新的创作范式,但具体形式难以预测。 此外,在 AI 制作游戏 PV《追光者》的案例中: 1. 作为游戏动效设计师,AI 可以取代“怎么做”的部分,加速实现过程并补足短板,但无法替代“做什么”的阶段。 2. 该作品灵感来源于《艾尔登法环》、《黑神话悟空》等游戏开场片,加入佛教元素,结合了 chaGPT、MJ 绘图、SD 重绘、AI 抠图、Aive 制作背景音乐、微软 AI 制作旁白等,除撰写故事框架外,生图及后期配音约用 7 天完成。
2024-12-25
最好的制作ppt的ai是谁?
目前在制作 PPT 方面表现出色的 AI 工具包括以下几种: 1. GPT4:可以帮助生成 PPT 大纲,但生成符合要求的大纲可能较为耗时。 2. WPS AI:能够基于大纲快速生成 PPT,还可以进行二次修改,如修改主题配色和字体等。 3. Gamma:免费版本就能生成质量较高的 PPT,在内容组织、设计美观度和整体专业感方面表现卓越。 您可以根据自己的需求和使用习惯选择适合的工具来制作 PPT。
2024-12-25
制作名片
以下是关于制作名片的相关内容: 一、一泽 Eze 的制作方法 1. 原理:1 句提示词 + 1 个品牌 Logo = 超级符合品牌调性的创意名片。 2. 流程: 输入 Prompt。 输入要用的 Logo。 AI 会根据 Logo 对应的品牌特征,分析名片设计方案,输出最终结果。 3. 提示词获取:已开源,可直接获取。 4. 注意事项: 提示词主要目的是“设计符合品牌调性的创意名片”,在名片设计中,设计出符合品牌调性的创意方案最复杂,借助大模型,AI 仅凭一个 Logo、一张官网截图,就能自动推敲设计思路,生成极富创意的 Demo。 “创意名片生成”已支持在 Artifacts 中正确回显上传的 Logo,为了更好的直出效果,Logo 建议使用清晰、底图透明的 PNG 格式。 如果生成结果不符合预期,可以尝试让模型重新生成,也可以和 AI 对话,提出修改意见,比如修改名片文案。 二、甲木的制作方法 1. 原理:主题 + 方向 = 超级符合诗词原意调性的古诗词名片。 2. 流程: 输入 Prompt。 用户输入主题、风格。 AI 会根据主题、风格,直接输出最终结果。 3. 提示词获取:已开源,可直接获取。 4. 创作过程:根据给定的主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片来展示选中的诗词,提供诗词的背景信息、意境解读和文化内涵,支持根据用户提供的主题和方向直接生成对应语境的 prompt,同时配图来生成 SVGCard。 三、即梦 AI 智能画布的制作方法 1. 官网:https://jimeng.jianying.com/ 2. 案例三:LOGO 玩法 制作步骤: 第 1 步:在即梦左侧点击「智能画布」,「上传图片」上传一张 logo 图,点击「图生图」输入描述词,参考程度为 55,选择「轮廓边缘」,点击立即生成。 第 2 步:右侧图层可看到 4 张图,选择喜欢的图即可;如果不喜欢,可用局部重绘、消除笔等功能调整,也可以重新生成。
2024-12-24
想制作个人的知识库国内有什么好的AI工具么
以下是一些国内可用于制作个人知识库的 AI 工具: 1. Kimi 智能助手:是 ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。PC 端可通过下载。 2. 飞书:汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。可通过下载。 此外,学习使用国内大语言模型工具可以从提示词开始。一些国产大模型如智谱和文心可以实现文生图的功能。
2024-12-24
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
制作ppt 的 ai 工具
以下是一些制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,在教学中帮助学生做好组会准备时,Claude 和 Gamma.app 这两个工具组合使用效果较好。Claude 可帮助快速寻找符合条件的论文、提取精炼论文中某部分信息等。
2024-12-21
我发给AI几张图,能不能做一个电子画册?哪一个AI做的更好
目前有一些 AI 工具可以帮助您将几张图制作成电子画册,例如谷歌的 Imagen 3。Imagen 3 是谷歌推出的高质量文本到图像模型,能够生成细节更好、光照更丰富且干扰伪影更少的图像。 如果您想快速制作电子画册,以下是一些相关的知识和方法: 1. 对于制作海报,您可以使用国内的 AIGC 绘图平台无界 AI。大致流程包括确定主题与文案(可借助 ChatGPT 等文本类 AI 工具协助完成文案)、选择风格与布局、生成与筛选海报底图、配文与排版。 2. 在游戏截图升级方面,底图制作可以使用 PS 添加内容丰富画面。比如简单粗暴的背景贴人物合成,或者通过一些简单加工让 AI 更清楚您的需求。还可以结合 3D 软件定制内容,如使用 ACCURIG 进行一键绑定等。
2024-12-26
我想ai帮我画一个八一起义纪念碑的简笔画,应该用什么工具
您可以使用以下工具来实现让 AI 画八一起义纪念碑的简笔画: 1. ChatGPT:您可以拍下自己画的简笔画,上传给 ChatGPT,并请一个叫“Cartoonize Yourself”的 GPTs 将其转换为画作。 2. “dodoboo”App:由 Hidecloud 和 Sharpmark 创造,无需科学上网,可用 AI 将简笔画转为精致作品。 需要注意的是,这些工具可能需要您根据实际情况进行探索和尝试,以获得满意的效果。
2024-12-26
我想ai帮我画一个简笔画,应该用什么工具
如果您想让 AI 帮您画简笔画,可以使用以下工具: 1. ChatGPT 结合“Cartoonize Yourself”的 GPTs:您可以拍下简笔画上传给 ChatGPT,然后使用“Cartoonize Yourself”将其转换为皮克斯风格的画作。 2. “dodoboo”App:由 Hidecloud 和 Sharpmark 创造,无需科学上网,可用 AI 将孩子的简笔画转为精致作品。 如果您是绘制示意图,以下工具可供选择: 1. Creately:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。具有智能绘图功能、丰富的模板库和预定义形状、实时协作功能等。官网:https://creately.com/ 2. Whimsical:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。具有直观的用户界面、支持拖放操作、多种协作功能等。官网:https://whimsical.com/ 3. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。具有无缝协作、丰富的图表模板和工具、支持与其他项目管理工具集成等。官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设您需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-26
我需要专门进行金融投资项目研究,除了定性研究还很关注数据研究,我需要这样的智能体,哪一个智能体平台比较适合?
以下是一些可能适合您进行金融投资项目研究的智能体平台: 1. 蚂蚁的智能体。 2. Coze 的智能体。 3. 扣子平台:例如生物医药小助手就是基于扣子平台创建的,能为用户提供清晰的一步式回答。 4. Cursor 平台:可用于设计如卡密系统等商业化模式。 不过需要注意的是,不同的智能体平台可能具有不同的特点和适用场景,您需要根据自己的具体需求和使用习惯进行选择。
2024-12-26
给多张图片生成一个全身图
以下是关于生成多张图片和控制图片生成的相关知识: 对于 DALL·E 3 : 描述发送给 DALL·E 的文本应极其详细且超过 3 句话。 生成图像的分辨率可选择 1792x1024(宽)、1024x1024(方)、1024x1792(高),默认使用 1024x1024(方),除非提示词建议使用其他尺寸。 若用户未指定生成的标题数量,默认生成 4 个,且应尽量多样化。生成图像数量不超过 4 个。 对于 Stable Diffusion : 调节宽度和高度可控制照片大小。一般生成正方形照片可设为 512x512,生成长方形照片时,电脑配置差不建议设为 1024、2048 等较大尺寸。 生成多张照片时,通常只调整“总批次数”,即一张一张生成;同时调整“单批数量”对显卡有要求。 让生成的图片更可控的技巧: 上传多种图片进行融合生成时,一张图片最好只有一种特征。 可使用多重关键词,为不同单词赋予不同权重,如 hot::2 dog 中 hot 对结果影响更大;也可通过负数权重减弱某种元素比重,如 red::.5 可减少大红色。 还可用 no 参数弱化某个元素,如 no hands 可降低手出现问题的概率,其与 hands:0.5 等价。 可设置 v 版本。
2024-12-26
给多张图片生成一个3d建模
以下是一些可用于将多张图片生成 3D 建模的工具: 1. Tripo AI:是 VAST 发布的在线 3D 建模平台,基于数十亿参数级别的 3D 大模型,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。在“Create”界面底部输入框输入提示词(不支持中文),或点击输入框左侧的“</>”按钮随机生成提示词,点击“Create”生成 3D 模型,每次生成 4 个基础模型,不满意可点击“Retry”重新生成,有满意的模型点击“Refine”精修,精修进度在“My Models”中查看,一般 5 分钟左右完成。还可通过点击输入框右侧的图标上传图片生成 3D 模型,图生 3D 一次生成一个基础模型,同样支持“Retry”重生成和“Refine”精修。 2. Meshy:功能全面,不仅支持文本生成 3D,还支持图片生成 3D 以及 AI 材质生成。用户可通过上传图片并描述需要的材质和风格来生成高质量的 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,其“Realtime Sketch to 3D”功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。用户可上传图片或输入文本提示词来生成 3D 模型。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能够将图像或文本快速转换成 3D 模型,并提供了图像到 3D、文本到 3D 和文本到纹理等多种功能。 6. Polycam:只需上传至少 20 张图片或至少 20 秒的视频,Polycam 自动处理并构建一个 3D 模型。生成后还可以编辑模型,支持 12 种以上的格式导出到流行的 3D 软件中,如 Blender、SketchUp、Unreal、Unity 等。100 张图像的云处理建模时间只需要大约 1 2 分钟。可以在网站以及 iOS 和 Android 应用中来创建、编辑和存储 3D 模型,完全免费。Polycam 还可以轻松将无人机拍摄的图像转换为广阔的 3D 模型。只需上传关键帧无人机图像,就可以快速得到 3D 模型。Polycam 与所有流行的无人机兼容,包括 DJI Mavic 3、DJI Mini 4 Pro 和 DJI Phantom 4 Pro。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能。它们可以广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。
2024-12-26