Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

大模型在办公场景的应用

Answer

大模型在办公场景有诸多应用,具体如下:

  • 基础办公提效:在 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等方面,能从单个任务 task 到角色 role 再到角色间协同 collaboration 显著提高工作效率。
  • 人力资源管理:覆盖招聘初期(如职位描述生成、简历分析、面试题设计)、员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)以及员工培训与发展各个环节,提高工作效率。

通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作:

  1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。
  2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。
  3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。
  4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。

在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。

此外,在游戏行业,大模型能降低成本,打造创新玩法,提供更好的游戏体验。如网易推出的首款 AI 手游《逆水寒》,将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特剧情体验,还内嵌了全自动“AI 作词机”。在健身行业,AI 减重顾问既能解决售前客服问题,也能解决学员离开健身营之后的健康监护,提高学员体验。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai|Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models-Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD-WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站-AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

开发:AI应用大模型商业化落地现状与思考

接下来是游戏行业,从一款游戏的前期制作,到中期运营再到后期迭代,大模型不仅能降低成本,还能打造创新玩法,提供更好的游戏体验。我们来看屏幕上右上角的图片,这是网易推出的首款AI手游《逆水寒》,除了将AIGC应用于美术开发,更在NPC与玩家的交互上呈现独特的剧情体验,而非仅限于预设的脚本。《逆水寒》制作组在游戏中内嵌了一个全自动“AI作词机”,玩家可以输入几个关键词,AI便会一秒生成一首完整诗词,让玩家变身文人骚客。比如,玩家输入“西湖细雨”,AI会结合游戏里的景色,来一句“雨余微暖细看残,暗香浮动西湖。”根据官方说法,“AI作词机”基于的是网易拥有自主知识产权的伏羲AI引擎,且语料库高达2万多首经典宋词。众多大模型的应用可以让游戏NPC“活起来”生成新的数字世界,玩家们能够从中体会到独特的乐趣~当然在各行各业通用的人力资源管理领域,AI的应用覆盖了从招聘初期(如职位描述生成、简历分析、面试题设计)到员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)再到员工培训与发展各个环节,显著提高了工作效率。在全行业中,基础办公提效ppt、excel、会议报告、策划会、文案包装、图文海报、客服机器人bot等等都可以从【单个任务task->角色role->角色间协同collaboration】显著提高工作效率。健身行业—AI减重顾问——既能解决售前客服的问题,也能解决学员离开健身营之后的健康监护,更能提高学员的体验。

Others are asking
目前国内最多人用的ai软件是什么,大家具体的应用场景是什么。
目前国内较多人使用的 AI 软件及应用场景如下: 医疗保健领域: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 金融服务领域: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 零售和电子商务领域: 产品推荐:向客户推荐可能感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 制造业领域: 预测性维护:避免机器故障停机。 质量控制:检测产品缺陷。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:提高生产效率。 此外,还有一些具体的应用产品,如: 游戏领域:腾讯游戏助手的 AI 游戏角色生成器,为游戏开发者生成独特角色。 招聘领域:智联招聘 APP 的 AI 招聘筛选工具,帮助企业快速筛选简历。 房地产领域:贝壳找房 APP 的 AI 房地产评估系统,准确评估房地产价值。 天气领域:墨迹天气 APP 的 AI 天气预报助手,提供精准天气预报和气象预警。 需要注意的是,关于国内使用人数最多的 AI 软件,没有确切的权威统计数据,其使用情况可能因行业、用户需求和地域等因素而有所不同。
2024-12-24
comfyui和dify有什么区别?分别适合什么场景?
ComfyUI 和 Dify 的区别主要体现在以下方面: 1. 用户界面:SD WebUI 的 UI 更像传统产品,有很多输入框和按钮;ComfyUI 的 UI 界面复杂,有很多方块和复杂的连线。 2. 学习成本:ComfyUI 的学习成本比 SD WebUI 高。 3. 工作流方式:ComfyUI 采用连线搭建自动化工作流的方式,从左到右依次运行,通过改变节点可实现不同功能,如一个节点是直接加载图片,另一个是通过画板绘制图片,从而实现导入图片生图或绘图生图等不同功能。 适用场景: ComfyUI 因其自由和拓展性,适合以下场景: 1. 用户可以根据自身需求搭建适合自己的工作流,无需依赖开发者。 2. 能够根据需求开发并改造某个节点,从而调整使其切合自己的工作流甚至改造工作流。 Dify 方面的具体适用场景未在提供的内容中有明确提及。
2024-12-23
我是一个法律工作者,需要经常回答客户的一些法律问题,哪个AI适合我这种场景的工作需求
对于您这种经常回答客户法律问题的法律工作者,以下几种场景中适合使用法律行业垂类的 AI 产品: 1. 法规研究与解读:使用 Prompt 指令词,如“根据最新修订的《数据安全法》,解析企业在处理个人信息时应遵循的主要原则,并给出具体操作建议”,AI 助手将依据最新条款解析原则并提出操作指南或合规建议。 2. 法律意见书撰写或非诉交易文件材料:例如“针对我方当事人涉及的版权纠纷案,输入【已有的证据材料】+【相关法律条文】,撰写一份初步法律意见书,论证我方主张的合理性和胜诉的可能性”,AI 将根据提供的材料撰写法律意见书。 3. 案例检索:如“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要”,AI 系统将检索并提炼关键判决理由和结果。 4. 类案检索:同样最好使用法律行业垂类的 AI 产品。 5. 法律文本阅读:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 在使用 Prompt 时,要注意结构提示,如“【需求或目的+根据具体法条或者根据某部法律+具体需要研究或则具体的研究细节内容】”。
2024-12-19
在办公场景下,如何使用AI,让我办公效率更高
在办公场景下,以下是一些使用 AI 提高办公效率的方式: 1. 产品经理方面:使用 GPT 解决性能差和历史数据存档的问题,可将最终的 SQL 执行时间大幅缩短,提升效率并降低复杂度,同时保存所有历史数据,实现报表秒开。 2. 运营方面:将 ChatGPT 视为日常工作的辅助工具,顺应技术发展趋势,借助其提升工作效率。 3. 营销方面:探索 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程;定制营销报告时,考虑汇报对象身份、销售数据、财务报告等多方面因素。 4. 办公方面:用 ChatGPT 生成 Markdown 语法的内容,再借助 MindShow 工具转换为精美的 PPT。 此外,还有一些 AI 应用也能助力办公,比如: 1. 豆果美食 APP:能根据用户口味和现有食材生成个性化菜谱。 2. 沪江开心词场:辅助用户学习语言,提供个性化学习方案。 3. 爱奇艺智能推荐:根据用户喜好推荐电影,帮助发现优质影片。 4. WPS Office:利用智能排版、语法检查等功能,提高办公效率,实现自动化办公流程。
2024-12-18
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
AI技术在餐饮行业的应用场景有哪些
AI 技术在餐饮行业的应用场景主要包括以下方面: 1. 营销管理:时来智能通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果,帮助门店提升 50%100%的营销转化效果以及相应提升平均 1520%的营业额。 2. 菜谱调整:下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等。
2024-12-17
推荐几个办公好用的AIAPP
以下为您推荐几款办公好用的 AI APP: 1. Butterflies AI:这是一款具有社交主题的软件,不仅能进行聊天,还能使用图像生成功能,创建角色轻松便捷,AI 辅助创作出色。但部分角色外观不够一致,搜索页面有待优化。 2. 目前没有更多明确针对办公场景好用的 AI APP 相关信息。
2024-12-23
办公Ai软件
以下是一些办公 AI 软件: Excel 相关: Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中进行数据分析和决策支持。 Microsoft 365 Copilot:整合了 Word、Excel 等办公软件,通过聊天形式完成数据分析或格式创建等任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、文本内容、执行情感分析、语言翻译等任务。 WPS 文档翻译功能:快速翻译办公文档,如 Word、Excel、PPT 等,提高工作效率。 腾讯文档分类功能:利用 AI 自动分类办公文件,方便管理。 随着技术的不断发展,未来会有更多 AI 功能集成到办公软件中,进一步提高工作效率和智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-23
我想提高办公效率 AI可以帮到我吗
AI 可以帮助您提高办公效率。以下是一些相关的研究和观点: 哈佛商学院的研究表明,在工作中使用 AI 能带来显著改善。使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,完成速度提高 25.1%,结果质量提高 40%。 但 GPT4 等模型有能力边界,无人知晓其具体范围。 分组测试中,使用 AI 的两组任务完成效率和质量远高于未使用组,且对工作能力差的被测试者提升更大。 过于依赖 AI 可能适得其反,降低效率和质量,因无法区分其能力边界。 人类和 AI 协作有“半人马”和“机械人”两种方式。“半人马”强调人类主导,合理调配资源;“机械人”则是高度融合,循环迭代优化,实现人机一体化。 工作中常因流程混乱、效率低下而浪费时间,SOP(标准操作程序)是职场利器。可借助 AI 助手建立和优化 SOP 以提升效率。 强大的 AI 有巨大潜力,能像电力或互联网一样影响社会和经济,可提高劳动力效率和工作场所安全,支持人们完成现有工作,有助于推动增长和创造就业。为保持在 AI 领域的领先地位,英国需创造利于创新的监管环境。
2024-12-21
AI办公工具
以下是一些常见的 AI 办公工具: 豆果美食 APP:这是一个 AI 菜谱生成平台,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户口味和现有食材生成个性化菜谱。 沪江开心词场:作为 AI 语言学习助手,运用自然语言处理和机器学习技术,市场规模达数十亿美元。它能辅助用户学习语言,提供个性化学习方案。 爱奇艺智能推荐:这是一个 AI 电影推荐系统,采用数据分析和机器学习技术,市场规模达数亿美元。它能根据用户喜好推荐电影。 WPS Office:作为 AI 办公自动化工具,借助自然语言处理和机器学习技术,市场规模达数十亿美元。它能提高办公效率,实现自动化办公流程。 Gamma:在线 PPT 制作网站,用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,用户输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ WPS 文档翻译功能:AI 办公文档翻译工具,运用自然语言处理技术,能快速翻译办公文档,提高工作效率。 此外,还有以下 AI 办公工具: 美丽修行 APP:AI 美容护肤产品推荐平台,通过数据分析和自然语言处理,根据用户肤质推荐适合的美容护肤产品。 360 儿童手表:AI 儿童安全监控系统,利用图像识别和机器学习技术,保障儿童安全,让家长放心。 汽车之家 APP:AI 汽车保养提醒系统,借助数据分析和机器学习,提醒车主及时进行汽车保养。
2024-12-13
AI agent自动办公化应用在哪些领域?
AI agent 自动办公化的应用领域广泛,包括但不限于以下方面: 1. 企业内部办公:如 Microsoft 的 Copilot 产品升级,可自动化日常繁杂的会议记录与日程安排,还能设计适合组织内部的自动化流程,帮助访问数据库和自动操作办公软件。 2. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 3. 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 4. 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 5. 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 6. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 7. 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 8. 办公软件:如 WPS Office 中的智能排版、语法检查等功能,利用 AI 技术帮助用户快速完成文档处理工作,提高办公效率。 9. 美食领域:豆果美食 APP 可根据用户口味和现有食材生成个性化菜谱。 10. 语言学习:沪江开心词场通过 AI 分析用户的学习进度和薄弱环节,为用户推荐合适的单词和学习内容。 11. 电影推荐:爱奇艺利用 AI 算法分析用户的观看历史、评分等数据,为用户推荐符合其口味的电影。
2024-12-01
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
ChatGPT如何训练需要的模型
ChatGPT 的训练模型主要包括以下几个方面: 1. 预训练(Pretrain)阶段:建立模型的能力上限,如确定模型各方面能力的天花板。此阶段跟 GPT3 的方法近似,例如采用 decoderonly 的网络架构,有特定的模型大小、输入窗口大小、单词本大小,见过大量的 tokens,使用大量的原始训练文本。 2. 监督微调(Supervised Finetune,SFT)阶段:让模型学会对话的形式展开,即知道如何按照对话的格式进行交流。 3. 强化学习从人类反馈(Reinforcement Learning from Human Feedback,RLHF)阶段:细分为奖励模型(RM)阶段和强化学习(RL)阶段,能激发模型具备多种能力,包括安全性、推理能力和稳定性等。 训练方式主要是通过材料学习,不断形成模型。其本质功能是“单字接龙”,通过自回归生成的方式,将生成的下一个词与之前的上文组合,不断重复生成任意长的下文。训练的目的不是记忆,而是学习提问和回答的通用规律,实现举一反三,即泛化。学习材料用于调整模型,得到通用模型,以处理未被数据库记忆的情况。ChatGPT 不是搜索引擎的升级版,搜索引擎无法给出未被数据库记忆的信息,而 ChatGPT 作为生成模型可以创造不存在的文本,但可能存在混淆记忆、无法直接查看和更新所学、高度依赖学习材料以及缺乏及时性和准确性等缺点。
2024-12-24
如何训练模型
训练模型的方法有多种,以下为您介绍几种常见的训练模型方式: 1. 用 SD 训练一套贴纸 LoRA 模型: 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 二次加工:完成贴纸的白色边线等细节加工。 处理素材:给训练集图片打 tag,修改 tag。 训练模型:将上述处理好的数据集做成训练集,进行训练。 2. 基于百川大模型训练虚拟专家: 选择 Baichuan27BChat 模型作为底模,配置模型本地路径,配置提示模板。 在 Train 页面里,选择 sft 训练方式,加载定义好的数据集 wechat 和 self_cognition。 学习率和训练轮次非常重要,根据自己的数据集大小和收敛情况来设置。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的朋友可以减少 batch size 和开启量化训练,内置的 QLora 训练方式非常好用。 需要用到 xformers 的依赖。 显存占用 20G 左右,耐心等待一段时间。 3. 使用编码器解码器架构构建诗歌生成器: 在训练模型之前,需要一个损失函数,由于本质上是一个多类分类问题,损失将是稀疏的分类交叉熵损失,配置从 logits 计算的损失。 有了损失后编译模型,将损失和优化器联系在一起。 选择训练的时期,一个时期是对数据集的完整传递,进行多次训练,并提供回调以确保在训练期间保存权重。 从实际的字符串中提取字符序列,使用 TensorFlow 的 TF 字符串 Unicode 拆分功能。 将字符序列转化为数字,使用 TF Keras 层中的 StringLookup 函数将每个字符映射到给定的 ID,也可使用同一层的 StringLookup 函数获得反向映射。 将处理后的数据作为神经网络的训练数据集,使用 TF Data Dataset API。
2024-12-24
我想找一个关于建筑三维模型渲染的ai网站
以下为一些关于建筑三维模型渲染的 AI 网站: 1. 3dfy.ai:这是一家专注于将稀疏数据转化为逼真三维世界的公司。其领导团队由计算成像领域资深专家组成,拥有近四十年综合专业知识。适用于数字内容创作者、艺术家、游戏开发者、动画制作人、教育和培训行业专业人士、医疗行业以及建筑和工程领域等。 2. HDAidMaster:云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 3. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索。 4. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范。 5. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据汇总与管理。 但需注意,每个工具都有其特定应用场景和功能,建议您根据自身具体需求选择合适的工具。
2024-12-24
企业微信自建应用可以接扣子api么
企业微信自建应用能否接入扣子 API 的相关信息如下: 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌起名,设置过期时间为永久有效,选择指定团队空间,勾选所有权限,并保存好令牌的 Token,切勿向他人泄露。 获取机器人 ID,在个人空间中找到要接入微信的机器人,点击进入编辑界面,浏览器地址栏 bot/之后的数据即为该机器人的 Bot ID。 进行 API 授权,点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 可以通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,而且可以参考相关教程将扣子接入微信机器人,但有微信封号风险。 对于扣子插件的搭建,GET 方法中传递参数的方式包括 Body(通常在 GET 方法中不用于传递参数)、Path(可传递参数,常编码为 URL 一部分)、Query(最常用的参数传递方式)、Header(通常不用于传递参数,而是定义请求头部信息)。配置输出参数时,若填写无误可点击自动解析,调试与校验时可查看输出结果。
2024-12-25
如何学习应用AI
以下是关于学习应用 AI 的全面指导: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、针对不同人群的学习建议 1. 对于中学生: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。 2. 对于偏向技术研究方向的学习者: 掌握数学基础,如线性代数、概率论、优化理论等。 学习机器学习基础,包括监督学习、无监督学习、强化学习等。 深入研究深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 钻研自然语言处理,包括语言模型、文本分类、机器翻译等。 探索计算机视觉,如图像分类、目标检测、语义分割等。 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等,并进行科研实践,包括论文阅读、模型实现、实验设计等。 3. 对于偏向应用方向的学习者: 具备编程基础,如 Python、C++等。 掌握机器学习基础,如监督学习、无监督学习等。 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 了解应用领域,如自然语言处理、计算机视觉、推荐系统等。 掌握数据处理,包括数据采集、清洗、特征工程等。 学会模型部署,如模型优化、模型服务等,并进行行业实践,包括项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
chatgpt最快达到1亿用户应用
ChatGPT 是最快达到 1 亿用户的应用程序,在短短 6 周内就自然实现了这一成就。相比之下,Instagram 花了 2.5 年,WhatsApp 花了 3.5 年,YouTube 和 Facebook 花了 4 年才达到相同的用户需求水平。ChatGPT 并非孤立现象,Character AI 的参与深度(平均每次会话 2 小时)、Github Copilot 的生产力益处(效率提高 55%)以及 Midjourney 的商业化路径(数亿美元的收入)都表明第一批杀手级应用已经到来。OpenAI 对 ChatGPT 的反响感到震惊,尽管其内部的兴奋点更多集中在 GPT4 上,但 ChatGPT 让公众意识到必须应对 AI 这一现实,它成为了历史上增长最快的消费者应用,据说已积累 1 亿用户(OpenAI 不愿证实这一点,只说它拥有数百万用户)。
2024-12-25
如何做面向高中生,专注于AI应用的培养项目
以下是一些面向高中生专注于 AI 应用的培养项目的建议: 1. 课程开发:包括 K12、本科和社区学院的人工智能相关领域的课程开发,以及技术伦理方面的课程开发。 2. 支持非正式教育活动:为 K12 学生提供参与人工智能系统的非正式教育活动支持。 3. 实现教育公平:努力为传统上在人工智能领域代表性不足的人群和地理区域提供公平的 K12 人工智能教育。 4. 教师培训:为 K12 教师提供人工智能及相关领域的培训和专业发展项目。 5. 提高研究人员留存率:努力提高专注于人工智能系统的研究人员在高等院校和其他非营利研究机构的留存率。 6. 公众教育:开展普及人工智能用途及其社会影响的宣传项目。 7. 评估活动:对开展的相关活动进行评估。 在教学中,要注意以下几点: 1. 对于写作等方面,如果让学生使用 AI,要先让他们了解什么是好的写作,找到自己的创造性声音。 2. 决定使用 AI 时,要根据学习任务来考虑,以学习目标驱动 AI 的使用,而非相反。 3. 例如在编程教学中,可能先让学生手动编码,掌握语言后再将 AI 生成的代码作为节省时间的工具;而在健康课程中,重点可能在于帮助学生设计健康活动,对使用生成式 AI 编写代码的限制可能不同。
2024-12-25
ai技术商业应用典型案例
以下是一些 AI 技术商业应用的典型案例: 企业运营: 日常办公文档材料撰写整理。 营销对话机器人,进行市场分析和提供销售策略咨询。 法律文书起草、案例分析以及法律条文梳理。 人力资源方面的简历筛选、预招聘和员工培训。 教育: 协助评估学生学习情况,为职业规划提供建议。 针对学生情况以及兴趣定制化学习内容。 论文初稿搭建及论文审核。 帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体: 定制化游戏,动态生成 NPC 互动,自定义剧情和开放式结局。 出海文案内容生成,语言翻译及辅助广告投放和运营。 数字虚拟人直播。 游戏平台代码重构。 AI 自动生成副本。 零售/电商: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。 金融/保险: 个人金融理财顾问。 贷款信息摘要及初始批复。 识别并检测欺诈活动风险。 客服中心分析及内容洞察。 保险理赔处理及分析。 投资者报告/研究报告总结。 制造业/汽车: 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 线上购车品牌、配置对比分析。 生命科学: 研发阶段靶点发现及产品成药性。 医学文献内容检索,重点摘要提取,相关法规整理。 医药代表培训及知识库建立。 分诊导诊助理、诊疗助理、术后护理及复建辅助。 此外,还有以下具体案例: 京东物流仓储管理系统:利用数据分析、机器学习等技术优化物流仓储管理,提高运营效率。例如通过智能算法优化货物存储位置,减少拣货时间。 BOSS 直聘简历筛选功能:利用自然语言处理、机器学习技术快速筛选简历,提高招聘效率。根据企业的招聘要求,提取关键信息,为企业推荐符合条件的候选人。 贝壳找房租赁管理功能:利用数据分析、自然语言处理技术管理房地产租赁业务,提高效率。根据租客的需求和偏好,自动推荐合适的房源。 腾讯游戏社交平台:利用数据分析、机器学习技术为玩家提供社交功能,增强游戏体验。根据玩家的游戏历史和兴趣爱好,推荐可能成为好友的玩家。
2024-12-25