Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ocr大模型的原理

Answer

OCR 大模型的原理如下:

  1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,一开始给定提示词,大模型结合自身存储的知识进行计算推理,算出下一个单词的概率并输出,新的输出与过去的输入一起成为新的输入来计算下一个词,直到计算出[end of text]的概率最大时结束输出。
  2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。预训练需要花费大量时间和算力资源,且在没有其他外部帮助的情况下,大模型所知道的知识信息可能不完备和滞后。
  3. 规模效应:参数规模的增加使得大模型实现了量变到质变的突破,最终“涌现”出惊人的“智能”。就像人类自身,无论是物种进化还是个体学习成长,都有类似“涌现”的结构。
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

总结一下,以上这段讨论,你要重点记住这句话:模仿人类大脑结构的AI,也自然而然的表现出人的特征,很多我们应对大模型回答不及预期的解决之道,也和人与人交流沟通的技巧如出一辙,息息相关。关于这一点,我们会在后续各种真实案例的分析拆解中再来讨论。GPT的全称是生成式预训练转换器模型(Generative Pre-trained Transformer),他的名字里就蕴含了大量重要的信息,接下来我们来聊聊GPT这三个字母的分别含义:图14 Generative Pre-trained Transformer生成式(Generative):所谓生成式,说的是大模型是根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。这一过程,像极了一个单字接龙的游戏,图15中给出了一个简单的例子做为说明:1.一开始我们给了大模型一些提示词Prompt,为了简化,在图中这个提示词只有一个单词:How;2.接下来,大模型会结合自己“大脑中存储的知识”进行计算推理,算出how后面接are这个单词的概率最大,于是输出are接在how后面;3.在已知how are的情况下,大模型再次推理计算,算出how are后面接you这个单词概率最大,于是输出you接在how are后面;4.不断重复上面步骤,每次大模型会多输出一个词(token),新的输出会和过去的输入一并成为新的输入,用来计算下一个词;5.直到计算出下一个词是[end of text]的概率最大,于是结束输出,回答结束([end of text]是一个特殊的token,用来终止对话输出)

走入AI的世界

没错,这就是大语言模型真实工作的样子,平时使用大模型看到他逐字输出的样子,并不是程序员做的酷炫“打字机”效果,而是大模型就是如此这般工作的。按照我们的常识认知,这种依靠概率计算逐字接龙的方法,恐怕连生成一个通顺的句子都难,更别提生成高质量有意义的回答了,为什么这种方法会有效呢?答案就是大,GPT-1的参数规模是1.5亿,GPT-2 Medium的参数规模是3.5亿,到GPT-3.5时,他的参数规模来到了惊人的1750亿,我们常说大力出奇迹,参数规模的增加,使得大模型实现了量变到质变的突破,最终“涌现”出了这种惊人的“智能”。反观人类自身,无论是长周期看物种的进化,还是短周期看一个个体的学习成长历程,都有这样“涌现”的结构,就像当我打下这些文字的时候,我的大脑也在神奇的进行着快速的语言组织,这个边打字边思考边输出的过程,又何尝不是一场接龙游戏呢?图15文字接龙游戏预训练(Pre-trained):正如我们前面五点朴素洞察提到的,人类是不知道自己没见过/学过的知识的,大模型也是如此,大模型“脑袋”里存储的知识,都是预先学习好的,这个预先学习并把对知识理解存储记忆在“脑袋”里的过程,就称为预训练。预训练是需要花费相当多的时间和算力资源的,当你了解并意识到预训练机制的时候,你就会明白,在没有其他外部帮助(例如使用浏览器插件,RAG等)的情况下,大模型所知道的知识信息总是不完备的,滞后的(非实时)。

【SD】软件原理傻瓜级理解

如果不会科学上网,也可以去启动器的界面直接下载模型,当然这里是看不见预览图的,但从名字你可能看不出这个模型是什么风格。将下载的大模型放在根目录的这个文件夹下【……\models\Stable-diffusion】,我们就可以在左上角的模型列表中进行选择了。(看不到就点旁边的蓝色按钮刷新一下)。旁边这个VAE,相当于是给模型增加一个提高饱和度的滤镜和一些局部上的细节微调。当然有的大模型本身就自带VAE,所以就不用再加了。VAE可以直接在启动器里面下载,下载的VAE放在根目录的这个文件夹下【……\models\VAE】。接下来要理解的一个概念是Embedding,这个功能相当于是一个提示词打包的功能。比如你想画一个娜美的人物形象,但是想要固定一个人物形象往往要几十条什么上百条提示词,比如性别、头发、脸型、眼睛、身材等等一大堆精确指向的词汇。那这个时候,就有人将这些提示词整合到一起做成了一个Embedding文件,你只需要使用一个提示词,就可以直接引入这个人物形象进行创作了。下载Embedding的地方同样是在C站,通过右上角的筛选Textual Inversion就可以找到,放在根目录下的embeddings文件夹里即可。接下来,讲一讲最重要的这个LORA,有了LORA就可以将人物或者物品接近完美地复刻进图像中,这就有了极大的商用价值。比如这个“墨心”的LORA,就可以把你的图片变成水墨风格。这个盲盒LORA可以生成这种2.5D的卡通小人角色。或者是一些明星角色的LORA,直接生成真人形象。还有知名的动漫角色,由于LORA其极其强大的功能,所以在使用上,大家需要有很强的版权和法律意识,所谓能力越大、责任越大,玩得太花,小心律师函到你家。

Others are asking
ocr
关于 OCR 的相关信息如下: GPT 的 OCR 识别问题及解决方案: 问题:开启代码执行功能时,GPT 会尝试用代码完成 OCR,导致无法正确识别图片文字。 解决方案: 如果是自定义 GPT,关闭 Code Interpreter。 无法关闭时,提问时明确说明“不要执行代码,请用自身多模态能力识别文字”。 直接使用 ChatGPT,而非 GPT。参考链接: 开源的 Zerox OCR 工具: 支持将 PDF、DOCX 转换为 Markdown。 可并发处理,能选择特定页面及模型选项。详细介绍参考:
2025-01-17
ocr
关于 OCR 的相关信息如下: GPT 的 OCR 识别问题及解决方案: 问题:开启代码执行功能时,GPT 会尝试用代码完成 OCR,导致无法正确识别图片文字。 解决方案: 如果是自定义 GPT,关闭 Code Interpreter。 无法关闭时,提问时明确说明“不要执行代码,请用自身多模态能力识别文字”。 直接使用 ChatGPT,而非 GPT。参考链接: 开源的 Zerox OCR 工具: 支持 PDF、DOCX 转换为 Markdown。 可并发处理,能选择特定页面及模型选项。详细介绍参考:
2024-12-26
用大模型将扫描版PDF进行OCR的工具
以下是一些关于用大模型将扫描版 PDF 进行 OCR 的工具的相关信息: kimi 目前不支持扫描版本的 PDF,需要纯文字才能识别。 大模型招投标文件关键数据提取方案中的输入模块设计,支持多种格式的文档输入,包括 PDF 等。对于图片,可以借助开放平台工具中的 OCR 工具进行文本提取。 在 0 基础跨界 AI 编程共学零基础手搓 AI 拍立得银海的相关内容中,提到了将 OCR 添加到工作流程中,输入为一张图片,具备图像理解和识别图像文本信息两个能力,之后以这两个能力生成的内容为输入使用大模型生成文案标题和文案。
2024-12-11
推荐可以OCR的AI
目前在 OCR(光学字符识别)领域,有一些表现出色的 AI 工具,例如百度 OCR、腾讯 OCR 等。这些工具通常具有较高的识别准确率和丰富的功能,可以满足不同场景下的 OCR 需求。
2024-09-26
推荐下好用的具备图像OCR能力的大模型
目前在具备图像 OCR 能力的大模型方面,一些较为知名和好用的包括百度的文心大模型、阿里云的通义大模型等。但大模型的性能和适用场景可能会因具体需求和使用场景的不同而有所差异。您可以根据自己的具体需求进一步评估和选择。
2024-09-19
OCR文字 识别的软件
以下为您介绍一些与 OCR 文字识别相关的内容: 在“安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语”中提到使用了 Simple OCR 插件,它能够识别图片中的文字,并返回识别结果,用于读取用户上传图片或文件的文字,并做相应处理。 在移动端图片视觉处理方面,对于试卷拍照去除书写笔迹,有以下详细方法: 1. 图像预处理: 图像去噪:使用高斯滤波、中值滤波等去噪算法去除图像中的噪声。 图像增强:通过直方图均衡化、对比度增强等增强算法提升图像的清晰度和对比度。 2. 图像分割: 使用阈值分割、边缘检测和基于区域的分割等算法将试卷图像中的书写笔迹和背景分离。 3. 文字检测: 在分割后的图像中,使用基于深度学习的文本检测模型等文字检测算法识别出试卷上的文字区域。 4. 文字识别: 对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用技术包括基于深度学习的端到端文本识别模型和传统的 OCR 技术。 5. 后处理: 根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 6. 机器学习模型训练(可选): 如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的书写笔迹特征来自动去除试卷上的笔迹。 7. 优化算法:
2024-09-18
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
当前最强AI模型有哪些?
当前最强的 AI 模型包括: 1. OpenAI 的 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。能够进行自我对话、多角度分析和自我质疑,具备一定的“思考意识”。下一代 o3mini 模型的推理能力能够媲美 o1 模型。 2. Google 的 Gemini 2.0 Flash:在重要的基准能力上直接追平甚至部分超越了 Gemini 1.5 Pro,同时模型速度有极大提升。 3. OpenAI 的 GPT4:是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 4. Midjourney v5:具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 5. DALL·E 3:代表了生成完全符合文本的图像能力的一大飞跃。 6. Mistral 7B:在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,还有智谱·AI 开源的一些模型,如 WebGLM10B、MathGLM2B 等。
2025-01-25
有没有辅助文献阅读,并能对文献内容进行整理的ai模型
以下是一些能够辅助文献阅读并对文献内容进行整理的 AI 模型和工具: 1. 智谱 AI 大模型开放平台: 场景介绍:大模型技术能快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间,帮助聚焦核心问题。其通用性可适应不同学科和复杂文本,提炼核心观点,为研究工作提速。 论文处理全景图:包括文献预处理和 LLM 内容处理。海量文献需转换为可供模型解析的文本格式,可借助平台工具完成文件内容提取。将文件内容自动化提取并结合大模型可进行批量分析或任务处理。 2. 利用 AI 写课题的步骤和建议: 确定课题主题,明确研究兴趣和目标,选择有价值和创新性的主题。 收集背景资料,使用学术搜索引擎和文献管理软件搜集相关文献和资料。 分析和总结信息,利用文本分析工具提取关键信息和主要观点。 生成大纲,使用写作助手生成包括引言、文献综述等部分的大纲。 撰写文献综述,利用工具确保内容准确完整。 构建方法论,根据需求设计研究方法。 数据分析,使用工具处理和解释数据。 撰写和编辑,利用写作工具撰写并检查语法和风格。 生成参考文献,使用文献管理工具生成正确格式。 审阅和修改,利用审阅工具检查逻辑性和一致性并修改。 提交前检查,确保原创性和格式调整。 3. 论文写作中常用的 AI 工具和平台: 文献管理和搜索:Zotero 可自动提取文献信息管理参考文献;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对等帮助提高语言质量;Quillbot 可重写和摘要优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭确保原创性。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应结合自身需求和写作风格,仔细甄别。
2025-01-25
现在有哪些开源的文生图大模型?
以下是一些开源的文生图大模型: Kolors: 2024 年 7 月 6 日开源,基于数十亿图文对进行训练,支持 256 的上下文 token 数,支持中英双语。技术细节参考 。 已支持 Diffusers,使用方式可参考 。 支持了 。 支持了 。 关于 Kolors 模型的教学视频: ,作者:BlueBomm 。 ,作者:AI 算法工程师 01 。 ,作者:峰上智行 。 ,作者:设计师学 Ai 。 Kolors 模型能力总结:改进全面,有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,在看到 Kling 视频生成的强大表现,能体现快手的技术实力。
2025-01-24
怎么搭建豆包模型
搭建豆包模型时,关于模型选择: 1. 没有强制必须用某个模型的说法,而是要根据自己的习惯、实测的响应速度、生成质量、调用费用进行综合选择。例如,Doubao Function Call 模型对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,并且各家模型都在不断迭代,所以模型的选用需要根据实测情况综合调整。 2. 一般可以选择豆包·function call 32k。“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。 此外,在飞书多维表格 AI 共学中,有王大仙演示中药材识别视频搭建过程,包括新建数据表、设置日期及附件字段,新建 AI 识别中药材列,自定义指令让 AI 识别中药材照片并按要求输出相关信息,最后强调要打开自动更新按钮实现工作效果。王大仙还测试了中药材照片识别结果及探讨产品打造配置,查看生成结果,以当归等中药材照片为例进行探讨,提到当归不太好识别,还谈及当归的使用方法、注意事项等,对结果表示满意,之后提到要用多维表格进一步配置打造产品,介绍豆包大模型能力已接入多维表格封装成 AI 字段,最后询问信息提取字段。同时,还有关于中药材信息提取及结构化标签生成的讨论,包括提取中药材名字,新建字段提取使用方法,提取价值和功效,提取使用注意事项等,还提到表结构需自己定义,可让豆包帮忙完成提取动作,还涉及用 AI 图片识别及提取字段拆解信息形成结构化标签。
2025-01-24
怎么做tts模型训练
以下是关于 TTS 模型训练的相关内容: 使用 GPTSoVITS 进行 TTS 模型训练: GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架。 只需 1 分钟语音即可训练一个自己的 TTS 模型。5 秒数据就能模仿您,1 分钟的声音数据就能训练出一个高质量的 TTS 模型,完美克隆您的声音。 主要特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,您可以直接下载使用。 GitHub: 视频教程: TTS 模型训练的音库制作和文本前端: 音频录制: 音频的录制对合成语音的表现较为重要,较差的语音甚至会导致端到端声学模型无法正常收敛。 用于训练的录音至少要保证录音环境和设备始终保持一致,无混响、背景噪音;原始录音不可截幅。 如果希望合成出来的语音干净,则要删除含口水音、呼吸音、杂音、模糊等,但对于目前的端到端合成模型,有时会学习到在合适的位置合成呼吸音、口水音,反而会增加语音自然度。 录音尽可能不要事先处理,语速的调节尚可,但调节音效等有时会造成奇怪的问题,甚至导致声学模型无法收敛。 音频的录制可以参考录音公司的标准,购买专业麦克风,并保持录音环境安静即可。 在音库录制过程中,可尽早提前尝试声学模型,比如音库录制 2 个小时语音后,就可尝试训练基线语音合成系统,以防止录音不符合最终的需求。 语料整理: 检查文本和录制的语音是否一一对应,录制的音频本身一句话是否能量渐弱,参与训练的语音前后静音段要保持一致,能量要进行规范化。 可使用预训练的语音活动检测(Voice Activity Detection,VAD)工具,或者直接根据语音起止的电平值确定前后静音段。 可以使用一些开源的工具,比如统一所有语音的整体能量,这将有助于声学模型的收敛。当然,在声学模型模型训练时,首先就要对所有语料计算均值方差,进行统一的规范化,但是这里最好实现统一能量水平,防止一句话前后能量不一致。 GPTSoVITS 实现 AIyoyo 声音克隆的步骤: 前置数据获取处理: 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待即可。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 成功:出现新的 URL,说明您自己的声音微调完毕,然后可以进行使用。 声音复刻:开启声音复刻之旅,实现跨多语种语言的声音。 希望以上内容对您有所帮助。
2025-01-24
可以简单说下deepseek的原理么
DeepSeek 是中国大模型创业公司中的一员,其背后的量化私募巨头幻方一年前储备了万张 A100 芯片。DeepSeek 发布的 DeepSeek V2 开源模型以低成本的性价比成为行业关注热点,推动了中国大模型价格战的爆发。 DeepSeek 的成功不仅在于技术创新,如提出的 MLA 架构和 DeepSeekMoESparse 结构,还在于其商业模式,即专注于研究和技术创新,而非追求快速商业化。其创始人梁文锋强调了原创式创新的重要性,并讨论了中国 AI 技术创新的未来趋势,以及与硅谷技术社区的差异和交流。 此外,DeepSeek 网站为 https://www.deepseek.com/zh ,使用方便,国内能访问,网页登录便捷,目前完全免费。在生成 2048 游戏代码方面,DeepSeek 对新手较为友好。在 MTBench 上表现优异,中文能力强且性价比高,拥有 2360 亿参数,其中 21B 在生成过程中被激活,60 位专家参与了混合开源模型,在数学、编码和推理方面表现出色。
2025-01-06
关于使用原理 AI的论文
以下是关于 AI 原理的相关内容: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据无标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-27
基于多模态大模型的具身智能 技术原理是什么
基于多模态大模型的具身智能技术原理主要包括以下方面: 决策模块是具身智能系统的核心,负责接收感知模块的环境信息,进行任务规划和推理分析,以指导行动模块生成动作。早期决策模块主要依赖人工编程规则和专用任务算法,而基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面存在局限。 大模型的出现极大增强了具身智能体的智能程度,提高了环境感知、语音交互和任务决策能力。具身智能体的大模型是 AIGA,调用机械臂、相机等身体部件,其发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。 VLA 输入语言、图像或视频流,输出语言和动作,在统一框架内融合互联网、物理世界和运动信息,实现从自然语言指令到可执行动作指令的直接转换。 VLN 输入语言、图像或视频流,输出语言和移动轨迹,用于统一指令输入框架,使大模型直接生成运动方向、目标物体位置等操作信息。 Google Deepmind 从大模型入手打造具身智能,率先提出 Robotics Transformer 系列模型,如 RT1 等,并不断升级。RT1 基于模仿学习中的行为克隆学习范式,输入短的图像序列和指令,输出每个时间步的动作。随着数据量增加,有从分层模型过渡到端到端模型的趋势。 北大 HMI Lab 团队构建了全新的 RoboMamba 多模态大模型,使其具备视觉常识任务和机器人相关任务的推理能力。 在具身智能应用中,更强调“动态”学习方式,如强化学习、模拟学习等,让机器人与环境不断交互学习,通过奖励机制优化行为,获得最优决策策略,摒弃传统控制论算法物理建模的弊端。
2024-12-27
基于世界模型的具身智能 技术原理是什么
基于世界模型的具身智能技术原理主要包括以下方面: 谷歌发布的世界模型 Genie: 能够学习一致的动作空间,可能适合训练机器人,打造通用化的具身智能。 其架构中的多个组件基于 Vision Transformer构建而成,为平衡模型容量与计算约束,在所有模型组件中采用内存高效的 STtransformer 架构。 Genie 包含三个关键组件:潜在动作模型(Latent Action Model,LAM)用于推理每对帧之间的潜在动作;视频分词器(Tokenizer)用于将原始视频帧转换为离散 token;动态模型给定潜在动作和过去帧的 token,用来预测视频的下一帧。潜在动作模型以完全无监督的方式学习潜在动作。 相关论文《Genie:Generative Interactive Environments》已公布,论文地址为 https://arxiv.org/pdf/2402.15391.pdf,项目主页为 https://sites.google.com/view/genie2024/home?pli=1 ,论文的共同一作多达 6 人,包括华人学者石宇歌。 具身智能算法层: 机器人创业公司 Covariant 推出的首个机器人基础模型 RFM1 是基于真实任务数据训练的机器人大模型,共有 80 亿参数,是基于文本、图片、视频、机器人动作、传感器信息等多模态数据进行训练的 any to any 序列模型。 RFM1 将机器人的实际动作也视作 Token,其 token 包括多种模态,每个模块都有专门的 tokenizer 进行处理。操作只有一个——预测下一个 token。 RFM1 对物理世界的理解源自于其学习生成视频的过程,通过接受初始图像和机器人动作的输入,预测接下来视频帧的变化,掌握了模拟世界每个瞬间变化的低层次世界模型。 行业进展: 李飞飞在 AI 3D 生成领域的工作极大地加速了进展,通过对 3D 物体的生成所构建出的世界,再进行降维的视频生成,生成的视频自然符合物理世界的规律,生成的世界也可交互。 世界模型开启了在虚拟世界中预训练机器人的可能,这个虚拟世界完全符合物理规律,可以快速生成无限场景,支持并行训练多个任务,大幅降低试错成本,加速机器人的学习过程,为实现更复杂的机器人行为打开可能。这种进步正在催生新的应用可能,如更自然的人机交互界面、更安全的机器人控制系统、更高效的虚拟训练平台等。世界模型也在改变 AI 理解和交互世界的基本方式。
2024-12-27
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
请描述具身智能的技术原理
具身智能是人工智能领域的一个子领域,其原理包括以下几个方面: 1. 强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能体的“身体”或“形态”很重要,它可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 2. 涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中致力于开发使智能体能够理解和解释视觉信息的算法。 3. 以“具身+智能”的范式,将机器学习算法适配至物理实体,与物理世界交互。例如将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。 4. 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 5. 行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 6. 在追求人工通用智能(AGI)的过程中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解所在环境并互动,产生具身行动。 具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用。但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2024-12-25