Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

亚马逊大语言模型全景培训

Answer

以下是关于亚马逊大语言模型全景培训的相关内容:

Andrej Karpathy 亲授的大语言模型入门讲座提到:

  1. 大型语言模型(LLMs):神经网络实际上是下一个词预测网络,通过给它一些单词来预测下一个单词。尽管下一个单词预测任务看似简单,但它迫使神经网络学习大量关于世界的信息,并将其编码在参数中。例如,预测关于露丝·汉德勒的内容时,模型参数需学习相关知识。模型推理是生成接下来的单词,通过采样选择单词并反馈回模型获取下一个单词,从而“梦想”出类似互联网文档的内容,如 Java 代码、亚马逊产品、维基百科文章等。
  2. 获取辅助模型的方式:保持优化相同,更换训练数据集。过去对互联网文档训练,现在替换为手动收集的数据集,通过雇用人员按标签说明提问并写下答案。预训练阶段文本量大但质量低,第二阶段更看重质量而非数量,文档少但都是高质量对话。

该讲座的作者是天空之城城主,来源为 https://mp.weixin.qq.com/s/fmb4nvIEA9AC-5JpNPWN7Q ,宝玉的另一翻译版本为 https://twitter.com/dotey/status/1728959646138880026 。讲座分为三大部分,包括第一部分的大型语言模型(LLMs)、第二部分的 LLM 的未来、第三部分的 LLM 安全性。Andrej Karpathy 近期进行了一场 30 分钟的入门讲座,虽未录制,但因受欢迎决定重新录制并上传至 YouTube 平台。

Content generated by AI large model, please carefully verify (powered by aily)

References

文章:Andrej Karpathy 亲授:大语言模型入门

所以,这个神经网络实际上是一个下一个词预测网络。您给它一些单词,它就会给出下一个单词。从训练中得到的结果实际上是一种神奇的工具,因为尽管下一个单词预测任务看似简单,但它实际上是一个非常强大的目标。它迫使神经网络学习到大量关于世界的信息,并将这些信息编码在参数中。在准备这场演讲时,我随机抓取了一个网页,仅仅是从维基百科的主页上抓取的内容。本文讨论的是露丝·汉德勒。设想一个神经网络,它接收一系列单词并尝试预测下一个单词。在这个例子中,我用红色标出了一些信息量较大的单词。比如,如果你的目标是预测下一个单词,那么你的模型参数可能需要学习大量相关知识。你需要了解露丝和汉德勒,包括她的出生和去世时间,她是谁,她做了什么等等。因此,在预测下一个单词的任务中,你将学习到大量关于世界的知识,所有这些知识都被压缩并储存在模型的权重和参数中。模型做梦(生成)现在,我们如何实际应用这些神经网络呢?一旦我们训练好它们,我就向你展示了模型推理是一个非常简单的过程。我们基本上是在生成接下来的单词,通过从模型中采样,选择一个单词,然后将其反馈回模型以获取下一个单词,这个过程可以迭代进行。这样,网络就可以“梦想”出互联网文档。例如,如果我们仅运行神经网络,或者说执行推理,我们会得到类似于网页梦想的东西。你可以这么想,因为网络是在网页上训练的,然后你让它自由运行。在左边,我们看到的是类似于Java代码的梦;中间是类似于亚马逊产品的梦;右边是类似于维基百科文章的内容。

文章:Andrej Karpathy 亲授:大语言模型入门

所以我们真的想要一个助理模型。而获取这些辅助模型的方式基本上是通过以下过程。我们基本上保持优化相同。所以训练是一样的。这只是下一个单词预测任务,但我们将更换正在训练的数据集。所以我们过去一直在尝试对互联网文档进行训练。我们现在将其替换为我们手动收集的数据集。我们收集它们的方式是使用很多人。因此,通常公司会雇用人员,并向他们提供标签说明,并要求人们提出问题,然后为他们写下答案。因此,这是一个基本上可以将其纳入您的训练集的单个示例的示例。有一个用户说,你能写一个关于垄断一词在经济学中的相关性的简短介绍吗?然后是助理。再次,该人填写理想的响应应该是什么,理想的响应以及它是如何指定的以及它应该是什么样子。这一切都来自我们为OpenAI或Anthropic等公司的人员和工程师提供的标签文档,或者其他任何会提供这些标签文档的公司。现在,预训练阶段涉及大量文本,但质量可能较低,因为这些文本仅来自互联网,有数百TB,而且质量并不高。但在第二阶段,我们更看重质量而不是数量。所以我们的文档可能会少很多,例如100,000,但现在所有这些文档都是对话,它们应该是非常高质量的对话,从根本上讲,人们是根据标签说明创建它们的。

文章:Andrej Karpathy 亲授:大语言模型入门

作者:天空之城城主来源:https://mp.weixin.qq.com/s/fmb4nvIEA9AC-5JpNPWN7Q宝玉的另一翻译版本:https://twitter.com/dotey/status/1728959646138880026前言OpenAI大家熟知的技术大神有两位,一位是首席科学家Ilya,很多人这几天可能因为OpenAI董事会风波而反复听过这个名字;另外一位则是温文儒雅的Andrej Karpathy。如果说Ilya的标签是ChatGPT之父,神级大牛;那么Andrej Karpathy的额外标签则是当之无愧这世界上最优秀的AI导师之一。本号在之前分享过他在微软Build大会的惊艳talk,首次讲述OpenAI大模型训练的原理,讲得深入浅出,让人醍醐灌顶:而今天,Andrej在网上应众人呼声给出一个大语言模型入门的讲座分享“给大忙人的LLM入门”。毫无疑问,这就是我们能看到的最新最好的大模型入门讲座了,特别适合希望真正了解当下最新的大模型技术基础的朋友们。-以下是讲座的天空之城精校整理版--全文分为三大部分,1.6w字:第一部分:大型语言模型(LLMs)第二部分:LLM的未来第三部分:LLM安全性大家好近期,我进行了一场关于大型语言模型的30分钟讲座,这场讲座具有入门性质。遗憾的是,该讲座未能录制下来。然而,在讲座结束后,许多人前来与我交流,他们表达了对讲座的喜爱。因此,我决定重新录制这场讲座,并将其上传至YouTube平台。现在,让我们开始吧。

Others are asking
ai大模型对亚马逊商家有什么作用
AI 大模型对亚马逊商家的作用主要体现在以下几个方面: 1. 营销活动分析:可以帮助分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 2. 库存管理:能够预测需求,优化库存管理,减少积压和缺货情况。 3. 支付和交易优化:分析不同支付方式对交易成功率的影响,优化支付流程。 4. 客户服务:通过驱动聊天机器人提供 24/7 的服务,解答疑问,提高客户满意度。 5. 市场分析:分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-05
不翻墙就可以使用的写亚马逊产品文案的AI工具有哪些
以下是一些不翻墙就可以使用的用于写亚马逊产品文案的 AI 工具: 1. Jasper.ai:这是一个商业文案写作平台。使用过程为:先选择文案的使用场景,Jasper.ai 会加载对应的模板,然后跟着模板步骤填写文案信息,最后生成完整文案并进行局部调整。 2. 目前市面上还没有专门针对亚马逊产品文案的特定 AI 工具,但一些通用的 AI 写作工具可能会有所帮助,比如利用 AI 进行市场分析、关键词优化、内容生成等方面来辅助撰写亚马逊产品文案。例如,利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,获取关键信息;通过 AI 推荐高流量、高转化的关键词来优化产品标题和描述;使用 AI 文案工具撰写有说服力的产品描述和营销文案等。
2024-08-09
如何用AI写亚马逊文案
以下是使用 AI 写亚马逊文案的一些方法: 1. 使用 Jasper.ai 平台: 先选择文案的使用场景,Jasper.ai 会加载一个对应的模板。 跟着模板的步骤,一步一步填写文案信息。 生成完整文案后,进行局部调整。 2. 借助文本类 AI 工具如 ChatGPT 协助完成文案的构思和创作。 3. 利用 ParagraphAI 这个 AI 写作助手,它能提升写作能力,提供语法、拼写和词汇检查以及查重功能,还能为电子邮件、消息、评论等生成自动回复,以个性化的风格和语气生成段落、电子邮件、文章、广告文案、产品描述等,并且受到亚马逊等知名公司的信任。
2024-08-09
有哪些完全免费,用于亚马逊运营的ai
亚马逊运营涉及多个方面,包括产品列表优化、库存管理、广告投放、客户服务等。目前市场上有一些AI工具可以辅助这些工作,但“完全免费”的工具可能功能有限或仅提供试用期。以下是一些可能提供部分免费功能的AI工具,用于亚马逊运营: 1. Helium 10:虽然不是完全免费,但Helium 10提供了一些免费工具,如产品研究工具、关键词研究工具等。 2. Jungle Scout:同样,Jungle Scout也提供了一些免费功能,用于产品研究和市场分析。 3. AMZScout:AMZScout提供了一些免费工具,例如关键词追踪器和竞争对手分析工具。 4. Sellics:Sellics是一个亚马逊卖家工具集,提供了一些免费试用功能,如广告管理、库存管理等。 5. FeedbackWhiz:用于自动化亚马逊反馈管理,可能提供有限的免费功能。 6. RepricerExpress:这是一个自动定价工具,可以帮助卖家根据市场条件调整价格,可能提供试用期。 7. Bqool:提供亚马逊反馈管理和价格监控工具,可能包括一些免费服务。 8. SellerApp:提供产品研究、关键词优化等功能,可能有一些免费工具或试用期。 9. Viral Launch:提供产品研究和列表优化工具,可能提供有限的免费服务。 10. Algopix:由Helium 10提供,是一个产品研究工具,可能有一些免费功能。 请注意,这些工具的免费功能可能包括基本的产品研究、关键词分析等,而更高级的功能如广告优化、库存管理等可能需要付费。此外,完全免费的AI工具可能在功能、数据准确性和更新频率上有所限制。因此,对于亚马逊卖家来说,选择适合自己业务需求的工具并合理利用其免费和付费功能是非常重要的。
2024-07-24
有没有什么ai工具可以去亚马逊产品详情页分析该品的差评
以下是一些可以分析亚马逊产品详情页差评的 AI 工具: 1. Instant Data Scraper:这是一个爬虫工具,可以帮助用户从亚马逊公开评论中抓取数据。用户可以根据自己的需求选择抓取不同星级的评论,然后将抓取到的数据上传到 GPTs 的 Knowledge Graph 中,让 GPT 根据知识库回答用研问题。 2. Valideo:这是一个通过 ChatGPT 获得最佳亚马逊产品评论的平台。它具有用户友好的界面,可以帮助用户节省时间,并且具有成本效益。 3. Rezon8AI:这是一个自动化评论管理工具。它通过 AI 系统自动分析和回复业务客户的评论,让用户无需手动处理。它能为用户提供有价值的见解,帮助用户改善业务服务。此外,Rezon8AI 还会将客户评论的常见主题和情感进行统计,并与客户情感进行对比,帮助用户了解在哪些方面表现出色以及应该关注的地方。 以上内容仅供参考,具体选择应根据个人需求和实际情况进行考虑。
2024-05-29
2024年AI公司全景图
以下是 2024 年 AI 公司的相关信息: AI 产业的产业链结构大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。但未找到一张满意的展示上中下游重点企业(或产品)的图,若您对图中不了解的公司/平台(或产品),建议搜索了解。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:20240313 融资 1.11 亿美元,A 轮,主营 AI 药物发现和精准医疗。 Together AI:20240313 融资 1.06 亿美元,A 轮,主营 AI 基础设施和开源生成。 Glean:20240227 融资 2.03 亿美元,D 轮,主营 AI 驱动企业搜索。 Figure:20240224 融资 6.75 亿美元,B 轮,主营 AI 机器人。 Abridge:20240223 融资 1.5 亿美元,C 轮,主营 AI 医疗对话转录。 Recogni:20240220 融资 1.02 亿美元,C 轮,主营 AI 接口解决方案。 2024 年的一些 AI 发展趋势: AI 将引领“智能即服务”的新服务模式,重塑工作和生活,重新赋能芯片和云计算行业,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显。 企业竞争策略分化,大模型争霸,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上备受瞩目的公司。
2024-11-20
量子位:2024中国AIGC广告营销产业全景报告
以下是关于《量子位:2024 中国 AIGC 广告营销产业全景报告》的相关信息: 生成式 AI 从供给端到需求端对广告营销各环节玩家造成冲击。在工作流程方面,AI 最先赋能策略洞察与内容生产,大模型加持的数字人带来全新交互体验。在典型场景中,创意生产工具呈平民化趋势,品牌可以为“一个人”量身定制广告。同时,生成式 AI 在创新广告形式、实现自动化营销、企业商业模式革新上重塑了广告营销格局。
2024-09-30
中国AIGC应用全景图谱
中国 AIGC 应用全景图谱 AIGC(AI Generated Content)是指利用人工智能技术生成的内容,是继用户生成内容(UGC)、专业生产内容(PGC)之后的新型内容生产方式。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作:AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化:AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成:AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 总之,AIGC 在 CRM 领域的应用可以帮助企业提高客户满意度、提升销售业绩、降低运营成本,从而实现更好的客户关系管理。你可以在知识库的研究报告目录下找到。
2024-05-27
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
我想为公司员工培训下AI基础入门使用技巧,帮我写一个课程大纲
以下是为您提供的公司员工 AI 基础入门使用技巧培训课程大纲: 一、AI 基本概念 1. 人工智能的定义和术语 2. 主要分支(机器学习、深度学习、自然语言处理等)及联系 3. 历史、当前应用和未来发展趋势 二、AI 学习资源与路径 1. 推荐的入门文章和学习资料 2. 为初学者设计的课程,如李宏毅老师的课程 3. 在线教育平台(Coursera、edX、Udacity)课程介绍 三、AI 应用领域与选择 1. 图像、音乐、视频等领域介绍 2. 根据兴趣选择特定模块深入学习的建议 四、提示词技巧 1. 提示词的重要性和作用 2. 掌握提示词的方法和技巧 五、实践操作 1. 理论知识的实践应用 2. 分享实践作品和经验 六、体验 AI 产品 1. 介绍常见的 AI 聊天机器人(ChatGPT、Kimi Chat、智谱、文心一言等) 2. 了解其工作原理和交互方式 七、AI 在企业中的应用 1. 对于企业管理者 AI 辅助决策 员工培训计划 流程优化 AI 伦理和政策 2. 对于教育工作者 AI 辅助教案设计 个性化学习路径 创新教学方法 AI 素养教育 希望这个课程大纲能满足您的需求,帮助员工更好地了解和应用 AI 基础知识。
2025-01-16
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
请给我推荐一些AI工具配上相关的AI培训视频。同时分析一下每个AI工具的使用场景,优势和缺点以及相似的工具推荐。要求这些AI工具适用于办公环境生产环境
以下为适用于办公环境生产环境的一些 AI 工具推荐,并对其使用场景、优势、缺点及相似工具进行分析: Keep: 使用场景:提供全面的健身解决方案,适用于个人健身计划制定和跟踪。 优势:中国最大的健身平台,资源丰富,能满足多种健身需求。 缺点:可能存在广告过多,部分功能需付费。 相似工具:Fiture Fiture: 使用场景:集硬件、课程内容、教练和社区于一体,适合追求综合健身体验的用户。 优势:由核心 AI 技术打造,提供一体化服务。 缺点:硬件设备可能价格较高。 相似工具:Keep Fitness AI: 使用场景:专注于利用人工智能进行锻炼,增强力量和速度。 优势:针对性强,对力量和速度训练有特定帮助。 缺点:功能相对较单一。 相似工具:暂无明确相似工具。 Planfit: 使用场景:提供健身房家庭训练与 AI 健身计划,适合在家健身的用户。 优势:AI 教练基于大量数据和 ChatGPT 实时提供指导。 缺点:可能对网络要求较高。 相似工具:暂无明确相似工具。 腾讯文档分类功能: 使用场景:自动分类办公文件,方便文件管理。 优势:提高文件管理效率,与腾讯文档集成方便。 缺点:分类准确性可能受文件内容复杂性影响。 相似工具:暂无明确相似工具。 英语流利说纠错功能: 使用场景:帮助语言学习者纠正发音、语法等错误。 优势:针对性纠错,有助于提高语言水平。 缺点:可能对某些特定语言习惯或方言的适应性不足。 相似工具:暂无明确相似工具。 下厨房口味调整功能: 使用场景:根据用户反馈调整菜谱口味。 优势:方便用户优化烹饪效果。 缺点:口味调整的精准度可能有限。 相似工具:暂无明确相似工具。 美丽修行定制方案功能: 使用场景:根据用户肤质定制护肤方案。 优势:个性化护肤推荐。 缺点:对肤质判断的准确性依赖用户输入的信息。 相似工具:暂无明确相似工具。 以上是部分适用于办公和生产环境的 AI 工具推荐及分析,您可以根据具体需求选择使用。
2025-01-06
我是一个公司的的开发人员,希望找到几个AI培训工具能够针对办公环境下的不同场景对员工进行培训使用。并且可以提供给员工使用
以下为您推荐一些适用于办公环境下对员工进行培训的 AI 培训工具: 1. AI 辅助决策工具:可在小规模决策中使用,例如分析客户反馈或市场趋势数据,作为决策参考。 2. 员工培训计划制定工具:帮助制定 AI 工具使用的培训计划,让团队成员了解如何在日常工作中有效利用 AI。 3. 流程优化工具:识别公司中可能受益于 AI 自动化的重复性任务,并测试 AI 解决方案的效果。 4. AI 伦理和政策制定工具:用于制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于不同场景和人员,还有以下针对性的工具: 1. 对于教育工作者: AI 辅助教案设计工具:尝试使用 AI 来帮助设计课程大纲或生成教学材料 ideas。 个性化学习路径工具:探索如何使用 AI 分析学生的学习数据,为不同学生制定个性化的学习计划。 创新教学方法工具:考虑如何将 AI 工具整合到课堂活动中,例如使用 AI 生成的案例研究或模拟场景。 AI 素养教育工具:开发一个简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 2. 在职业规划方面: 职业选择和规划工具:学生可以通过产品了解 AI 技术在不同职业中的应用,评估自己的兴趣和技能,选择合适的职业路径,并制定详细的职业规划。 技能提升工具:根据职业目标,学生可以获得个性化的学习建议和资源,提升自己在 AI 领域的技能,为未来的就业做好准备。 职业发展指导工具:职场新人可以根据自身的职业目标和市场需求,制定职业发展计划,明确短期和长期的职业目标。 职业转型支持工具:对于希望从其他领域转型到 AI 相关领域的从业者,产品可以提供详细的转型路径和必要的技能培训资源,帮助他们顺利转型。 在 PPT 制作方面,以下 AI 工具可供选择: 1. MindShow 2. 爱设计 3. 闪击 4. Process ON 5. WPS AI 选择工具时应根据实际需求进行调整,试用和体验总比盲目跟风更为明智。
2025-01-06
如何給中学老师培训AI
以下是为中学老师培训 AI 的一些建议和方法: 1. 展示实例:先上几张作业单截图,让老师猜猜其中有多少是 AI 生成的,通过实例让老师直观感受 AI 在教育中的应用。 2. 理论讲解:介绍 2022 年教育部颁布的新课程标准中关于“开展差异化教学”“加强个别指导”的内容,说明一线教师面临的繁重行政任务与实现这些目标的矛盾,强调 AI 在此方面的作用。 3. 实践操作: 让老师了解到借助大模型可以实现个性化学习和定制化作业,如让 AI 模仿中高考、托福雅思、SAT、GRE 等测试题,为教师提供源源不断的真题库,为学生提供错题练习库。 以一种题型为例,如英语学科的选词填空出题小助手,说明提示词的逻辑可迁移到语文学科。 4. 案例分享:介绍北京市新英才学校的探索实践,如跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带学生训练 AI 模型等,以及数字与科学中心 EdTech 跨学科小组组长魏一然在其中的工作和感受。 5. 介绍现状:说明教育科技长期以来在有效性和规模之间的权衡,强调 AI 可以解决这一问题,实现大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,并列举一些相关的应用,如语言学习、数学学习、历史学习、写作辅助、演示文稿创建等方面的 AI 工具。
2025-01-03
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27