直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

2024年AI公司全景图

回答

以下是 2024 年 AI 公司的相关信息:

  • AI 产业的产业链结构大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。但未找到一张满意的展示上中下游重点企业(或产品)的图,若您对图中不了解的公司/平台(或产品),建议搜索了解。
  • 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15):
    • Zephyr AI:2024-03-13 融资 1.11 亿美元,A 轮,主营 AI 药物发现和精准医疗。
    • Together AI:2024-03-13 融资 1.06 亿美元,A 轮,主营 AI 基础设施和开源生成。
    • Glean:2024-02-27 融资 2.03 亿美元,D 轮,主营 AI 驱动企业搜索。
    • Figure:2024-02-24 融资 6.75 亿美元,B 轮,主营 AI 机器人。
    • Abridge:2024-02-23 融资 1.5 亿美元,C 轮,主营 AI 医疗对话转录。
    • Recogni:2024-02-20 融资 1.02 亿美元,C 轮,主营 AI 接口解决方案。
  • 2024 年的一些 AI 发展趋势:
    • AI 将引领“智能即服务”的新服务模式,重塑工作和生活,重新赋能芯片和云计算行业,GPU 需求预计持续增长。
    • 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。
    • 科技巨头通过资本控制 AI 模型公司的趋势明显。
    • 企业竞争策略分化,大模型争霸,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上备受瞩目的公司。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

走入AI的世界

关于AI产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图5。图5 AI产业链图谱-1对于这上中下游分别有哪些值得我们重点关注的企业(或产品),我在公开互联网上苦寻良久,始终找不到一张满意的图(要么维度不全,要么举例不准,有失公允),于是我做了大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了这样一张图。图6 AI产业链图谱-2图6中有大量细节,其中各家公司的logo排列顺序综合考虑了其市占率,行业影响力,代表性等因素,积淀深厚的老牌大厂和值得关注的亮眼新星均有体现,未避免广告嫌疑,在这里不展开对其进行详细说明了,如果有大家不了解不认识的公司/平台(或产品),非常推荐你搜索了解一下(注:此图绘制于2024年5月)。

2024年美国融资金额超过1亿美元的AI公司(截止2024.10.15)

|项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息||-|-|-|-|-|-|-|-|-|-||Zephyr AI|2024-03-13|1.11|A||AI药物发现和精准医疗|应用|医学|Revolution Growth,礼来公司基金会,EPIQ Capital Group,Jeff Skoll|||Together AI|2024-03-13|1.06|A|12|AI基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures,NEA,Kleiner Perkins,Lux Capital|||Glean|2024-02-27|2.03|D|22|AI驱动企业搜索|应用|企业服务|Lightspeed Venture Partners,Kleiner Perkins,Sequoia,Databricks Ventures|||Figure|2024-02-24|6.75|B|27|AI机器人|应用|机器人|Nvidia,OpenAI,微软|||Abridge|2024-02-23|1.5|C|8.5|AI医疗对话转录|应用|医学|Redpoint,Lightspeed Venture Partners,USV,IVP,Spark Capital|||Recogni|2024-02-20|1.02|C||AI接口解决方案|基础设施|芯片|GreatPoint Ventures,Celesta Capital,Pledge Ventures,Mayfield,DNS Capital||信息来源:Techcrunch

2024年3月 / 科技变革与美股投资 2024

AI将引领新的服务模式,即“智能即服务”,通过增强能力、自动化和改变交互方式,重塑我们的工作和生活。此外,AI的发展将重新赋能芯片和云计算行业,为它们带来第二春,并创造新的投资机会。在这个过程中,GPU的需求预计将持续增长,进一步推动AI技术的革新和应用。企业软件、AI驱动的金融服务以及AI健康技术成为了吸引投资的主要领域。但值得注意的是,机器人行业的投资额已经超过了企业软件,预示着它可能成为下一轮AI革命的重要爆发点。这一点在2024年末或2025年初有望得到进一步验证。科技巨头们通过资本来控制AI模型公司的趋势也越来越明显。例如,OpenAI与微软的合作,Anthropic与Google的合作,以及其他公司与NVIDIA和AWS的合作,都表明了这一点。这种背后的资本支持不仅为AI公司提供了必要的算力,还加速了整个行业的发展。在这个AI时代,企业的竞争策略主要集中在两个方向:一是迅速成长为大型模型公司并寻找强大的背书,以获得竞争优势;二是保持规模较小,专注于盈利并灵活应对市场变化。这种分化的竞争模式预示着AI行业的未来将更加多元化和复杂。展望2024年,我们有理由相信这将是大模型争霸的一年。OpenAI、Gemini、Anthropic、LLama以及来自法国的Mistral将是市场上最受瞩目的几家公司。他们不仅在技术上相互竞争,还在为未来AI的方向和应用设定标准。这种竞争不仅对技术的进步至关重要,也为投资者和市场观察者提供了了解AI发展趋势的重要视角。

其他人在问
中国AIGC应用全景图谱
中国 AIGC 应用全景图谱 AIGC(AI Generated Content)是指利用人工智能技术生成的内容,是继用户生成内容(UGC)、专业生产内容(PGC)之后的新型内容生产方式。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作:AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化:AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成:AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 总之,AIGC 在 CRM 领域的应用可以帮助企业提高客户满意度、提升销售业绩、降低运营成本,从而实现更好的客户关系管理。你可以在知识库的研究报告目录下找到。
2024-05-27
2024年热门AI模型
以下是 2024 年的热门 AI 模型: 在编码任务方面,DeepSeek 的 deepseekcoderv2 成为社区的最爱。 阿里巴巴发布的 Qwen2 系列在视觉能力方面给社区留下深刻印象。 清华大学自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目,是可在设备上运行的小型参数模型。 在图像视频领域,国外 Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面进步显著,还推出了 Stable Video 3D。OpenAI 的 Sora 能生成长达一分钟的视频,并保持三维一致性等。Google DeepMind 的 Veo 能将文本和图像提示与视频输入结合生成高分辨率视频。 在生物医学领域,Profluent 的 CRISPRCas 图谱微调后生成功能性基因编辑器,如开源的 OpenCRISPR1。心智基础模型 BrainLM 基于功能性磁共振成像建立,能检测血氧变化等。 在气象预测领域,微软创建的 Aurora 能预测大气化学,比数值模型更优且速度更快。 获得诺贝尔物理学奖和化学奖的 AI 推动了机器学习理论创新,并揭示了蛋白质折叠问题。 蛋白质结构预测方面,有 DeepMind 和 Isomorphic Labs 发布的 AlphaFold 3。 DeepMind 展示的新实验生物学能力 AlphaProteo 能设计出高亲和力的蛋白结合剂。 Meta 发布的 ESM3 是前沿多模态生成模型,在蛋白质序列、结构和功能上训练。 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-12-16
2024年AI视频、图像领域市场情况
2024 年在 AI 视频、图像领域,市场呈现出以下情况: 国内方面: 中国开源项目在全球受到关注,成为积极开源贡献者。 DeepSeek 在编码任务中表现出色,推出的 deepseekcoderv2 受到欢迎。 阿里巴巴发布的 Qwen2 系列在视觉能力方面给社区留下深刻印象。 清华大学的自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。 国外方面: Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面有显著进步,还推出了 Stable Video 3D。 OpenAI 的 Sora 能够生成长达一分钟的视频,并保持三维一致性、物体持久性和高分辨率。 Google DeepMind 的 Veo 能将文本和可选图像提示与嘈杂压缩视频输入相结合,创建独特的压缩视频表示。 从市场数据来看,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,其中图像和视频类 AI 应用占据主导地位,收入占比高达 53%。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 在行业格局方面,云厂商成为 AI 供应链的“链主”,掌握着庞大的商业生态和技术资源。头部阵营基本稳定,大型云厂商在产业链中的地位无可撼动。
2024-12-15
2024年AI应用趋势
以下是 2024 年 AI 应用的一些趋势: 1. 在机器人研究领域,苹果 Vision Pro 成为重要工具,其高分辨率、高级跟踪和处理能力被用于远程操作控制机器人的运动和动作。 2. 在医学中,利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,从大量真实胸部 X 射线及其相应报告中生成大型数据集。 3. 企业自动化方面,传统机器人流程自动化面临问题,新颖方法如 FlowMind 和 ECLAIR 使用基础模型来解决限制,提高工作流理解准确率和完成率。 4. 算力瓶颈影响行业竞争格局,逐渐进入多模态灵活转换的新时代,实现文本、图像、音频、视频等模态的互相理解和转换。 5. 人类劳动形式“软件化”,复杂劳动被抽象为可调用的软件服务,劳动流程标准化和模块化。 6. AI 行业仍处于严重亏损阶段,商业化进程有待提升。 7. 云厂商是产业链中的“链主”,掌握庞大商业生态和技术资源以及巨大市场规模。 8. 2024 年头部 AI 应用中,创意工具仍占最大比重,To P 应用市场潜力大,ToB 应用发展路径复杂,ToC 应用面临挑战。 9. 在 AI 应用领域,Copilot 和 AI Agent 是两种主要技术实现方式,分别适合不同类型的企业。 10. 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,中国 AI 公司积极出海。
2024-12-12
2024年最权威的人工智能行业报告
以下是 2024 年人工智能行业报告的相关内容: 在 2024 年,国内外 AI 企业的竞争达到白热化阶段。 国外方面: Google DeepMind 和 OpenAI 展示了强大的文本到视频扩散模型预览,但访问受限且技术细节披露不多。 Meta 更进一步,将音频加入其中,Movie Gen 核心包含 30 亿视频生成和 13 亿音频生成模型,能分别以每秒 16 帧的速度生成 16 秒的视频和每秒 45 秒的速度生成音频片段。 Llama 3.1 是迄今为止最大版本,在推理、数学、多语言和长上下文任务中能与 GPT4 相抗衡,标志着开放模型缩小与专有前沿的差距。 OpenAI 草莓落地,加倍扩大推理计算规模,通过将计算从预训练和后训练转移到推理,以链式思维方式逐步处理复杂提示,采用强化学习优化,在需要大量推理的基准测试中取得显著改进,但成本较高。 Meta 推出 Llama 3 家族,包括 3.1 和 3.2 版本,使用大量令牌训练,在规模上不断突破。 国内方面: 国内涌现出类似可灵、即梦、智谱清影等一系列 AI 生成视频工具,生成结果甚至远超国外。 由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色。中国模型各有优势,如 DeepSeek 在推理过程中通过多头隐式注意力减少内存需求并改进 MoE 架构,零一万物更加关注数据集的建设。中国模型更能优先考虑计算效率,以弥补 GPU 访问的限制,并学会更有效地利用资源。 需要注意的是,报告中对中国的 AI 生成图、生成视频的工具未展开详细说明,但这并不代表中国有关该功能的 AI 工具落后于国外。
2024-12-07
2024年生成式人工智能-海外合规白皮书
以下是为您找到的与 2024 年生成式人工智能相关的内容: 《2024 年生成式人工智能海外合规白皮书(东南亚篇)》由垦丁律师事务所联合 WEEE Consulting 和 Boosterhub 撰写,深入分析了东南亚地区生成式人工智能(AI)的产业现状、监管框架及合规要求。报告涵盖了新加坡、越南、泰国、马来西亚、印度尼西亚和菲律宾六国,探讨了 AI 产品合规性、数据本地化、跨境数据传输、内容安全和知识产权等关键问题。报告指出,尽管东南亚国家在 AI 发展上展现出潜力,但各国法规和伦理标准存在差异,对 AI 的法律监管和合规要求也各不相同。 2024 年 8 月 26 日的《》,其中提到上周,Ideogram 推出功能强大的 2.0 图像生成模型,同时 Jamba 1.5 系列在非 Transformer 架构上取得突破。AI 工具如 ComfyUI 和 Cluade 更新,Cursor 获巨资融资。Google 的 Gemini AI 项目新增技术领导,亚马逊通过 AI 工具极大提升代码开发效率。 此外,还有其他一些相关研究报告,如: 《爱分析:2024 智能办公厂商全景报告》强调智能办公系统在企业数字化转型中的关键作用。 《平安证券:AI 系列深度报告(五)AI 手机》指出 AI 手机的发展重心正逐步向端侧转移,全球出货量将呈现指数级增长。 关于 2024 年人工智能的报告还包括: 2024 人工智能报告中提到,欧盟人工智能法案获得批准并正式生效,欧洲成为世界上第一个全面采用人工智能监管框架的地区。美国大型实验室努力应对欧洲监管,中国人工智能监管进入执行时代,美国对中国实施更严格的出口管制和投资限制。 《生成式 AI 季度数据报告 2024 月 13 月》,作者为郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara ,报告包含总体流量概览、分类榜单等内容。 您可在知识星球下载其它一些研究报告: 。公众号回复“2024 一季度”,可以获得《生成式 AI 季度数据报告 2024 月 13 月》的 PDF 。
2024-12-02
2024最火的AI
2024 年是 AI 迅速发展的一年,以下是一些热门的情况: 国内方面: 中国开源项目表现出色,成为积极开源贡献者。 DeepSeek 在编码任务中成为社区最爱,如 deepseekcoderv2。 阿里巴巴发布的 Qwen2 系列,其视觉能力给社区留下深刻印象。 清华大学自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。 国外方面: Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面进步显著。今年 3 月推出的 Stable Video 3D 可预测三维轨道。 OpenAI 的 Sora 能生成长达一分钟的视频,保持三维一致性等,还使用原始大小和纵横比的视觉数据训练。 Google DeepMind 的 Veo 将文本和可选图像提示与嘈杂压缩视频输入结合处理。 在 AI 企业竞争方面: 国内:阿里巴巴、清华大学等在各自领域表现突出。 国外: OpenAI 期待已久的草莓落地,加倍扩大推理计算规模,o1 在解决复杂问题上有显著改进,但成本较高。 Meta 推出 Llama 3 家族,不断更新版本,使用大量令牌训练,在规模上有突破。 此外,AI 革命促使成本下降,有可能改变关键领域的成本结构和提高生产力,涉及领域有扩大趋势。
2024-12-01
ai训练
AI 的训练是指通过大数据训练出一个复杂的神经网络模型。这一过程需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练具有以下特点: 1. 需要较高的计算性能,以处理海量的数据。 2. 具有一定的通用性,以便完成各种各样的学习任务。 机器学习是人工智能的一个分支,其发展有着从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的脉络。机器学习是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 自然语言(NLP)是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。自然语言的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理,自然语言生成系统则是把计算机数据转化为自然语言。 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程,也称为预测或推断。
2024-12-22
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-22
准备在小红书开通账号有什么AI工具可以帮助我运营么
以下是一些可以帮助您运营小红书账号的 AI 工具: 1. 小红书文案专家: 功能价值:见过多个爆款文案,只需输入网页或视频链接,就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 一期产品功能:可以提取任何链接中的标题和内容;按照小红书平台文案风格重新整理内容;加入 emoji 表情包让文案更有活力;为文案配图片。 二期计划功能:持续优化升级中,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 2. GPT4、WPS AI 和 chatPPT:可用于制作 PPT 等内容。 此外,还有一些小红书优质科技内容案例中的工具值得参考,如:
2024-12-22
检查文章是否是ai写的,有什么软件
以下是一些可以检查文章是否由 AI 写的软件: 1. Writer.com:提供免费的 AI 内容检测工具,使用时将文本粘贴到在线工具中点击检测按钮,系统会提供分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 3. Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中,系统会分析并提供结果。 4. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析并提供详细报告。 5. Copyscape:主要用于检测网络剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 6. Grammarly:提供语法检查和剽窃检测功能,将文本粘贴到编辑器中选择剽窃检测功能,系统提供分析报告。 7. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究。上传文档或输入文本,系统分析并生成报告。 8. Originality.AI:专门设计用于检测 AI 生成内容,上传文档或输入文本,系统提供详细报告。 以下是一些 AI 文章排版工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,帮助改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-12-22
我能不能用AI做一个实时交流的社群
以下是关于您能否用 AI 做一个实时交流社群的相关信息: AI 音乐方面: 存在 AI 音乐共建者的社群。 使用方式:文档中可贴喜欢的音乐或投稿教程,定期组织音乐交流会,社群中可实时交流音乐相关创作作品和经验分享。 加入条件:至少有一首以上的 AI 音乐作品,添加 AAAAAAAJ 备注音乐。 近期活动:「在线音乐会」网友出题,现场生音乐(时间待定);「Reaction」收集 AI 音乐,大家一起欣赏,记录听到意想不到的好听的歌的反应(时间待定)。 有趣的音乐可贴在文档下方,持续收集中。 Inworld AI 方面: 使 NPC 能够自我学习和适应,具有情绪智能。 特点和功能: 实时语音:使用内置语音设置进行最小延迟,可配置角色的性别、年龄、音调和说话速度,或使用第三方服务创建自定义和克隆语音。 “Contextual Mesh”功能:定制 AI 非玩家角色(NPC)的行为和知识。 可配置的安全性:可配置 NPC 对话方式,适应不同年龄级别游戏。 知识:输入“个人知识”控制角色应知道或不应知道的信息,使用“共享知识”定义多个角色拥有的知识。 玩家档案:收集玩家信息,让 NPC 在互动时考虑。 关系:配置角色关系流动性,创建不同关系的角色。 第四堵墙:确保角色只从其世界中的知识获取信息,创建更沉浸的体验。 可与各种游戏引擎(如 Unity、Unreal Engine 等)和其他游戏开发工具无缝对接,帮助品牌创建交互性强的 AI 角色,无需编码。
2024-12-22
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
怎么利用人工智能为一家一人公司赋能,具体实施办法,图片,视频等除外,讲一些实用的,新的想法
对于一家一人公司而言,利用人工智能赋能可以从以下几个实用且新颖的方面入手: 首先,在客户服务方面,可以运用智能聊天机器人来处理常见问题,提高响应速度和服务质量。通过自然语言处理技术,让机器人能够理解客户的需求并提供准确的回答。 其次,在市场营销中,利用人工智能进行数据分析,深入了解目标客户的行为和偏好,从而精准定位市场,制定更有效的营销策略。 再者,在业务流程优化上,借助人工智能的自动化能力,例如自动化文档处理、自动化邮件分类等,节省时间和精力,提高工作效率。 另外,在财务管理方面,使用人工智能工具进行风险预测和财务规划,帮助做出更明智的决策。 最后,在产品研发中,利用人工智能的创意生成能力,获取新的产品设计思路和创新点。
2024-12-18
介绍一个给公司起名的ai
以下为您介绍几个与公司起名相关的 AI 工具: 1. Character.ai:由 Noam Shazeer 和 Daniel De Freitas 于 2022 年 9 月创建的基于 LLM 的聊天机器人网站。该网站预先创建了许多聊天角色,用户可以与这些角色交流,也能自己创作角色。 2. Butterflies AI:成立仅半年的初创公司开发的人类与 AI 共存的社交软件。用户可在平台上创建具有独特个性的 AI 朋友,平台依赖公共 AI 模型及公司自有技术,目标是提升 AI 的真实感。 目前未找到专门用于公司起名的 AI 工具,但您可以利用上述具有一定创意和生成能力的 AI 平台获取相关灵感。
2024-12-13
我需要的是一款可以实时分析公司和行业最新资讯的AI工具
目前市面上有一些能够实时分析公司和行业最新资讯的 AI 工具,例如: 1. 百度的文心一言:具有强大的语言理解和生成能力,可以帮助您处理和分析相关资讯。 2. 微软的 Bing:能够提供搜索和资讯分析功能。 但需要注意的是,不同的工具在功能和特点上可能会有所差异,您可以根据自己的具体需求和使用习惯进行选择。
2024-12-11
《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》
AI 炒股方面,目前有一些相关的应用和服务。例如 Stocked AI 是一个投资服务,它提供每日股票推荐,这些推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 博主林亦 LYI 开了一家员工全是 AI 的公司来自动炒股,在某种程度上实现了多 Agent 协作的能力。但需要注意的是,目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品相对较少。一方面高度智能化的 Agent 能力还需要进一步打磨,概念落地还有较长距离;另一方面 AI 和娱乐消费诉求的结合几乎没有,其主要带来的是生产方式变革和效率变革。在个人消费者方向,目前只看到“私人助理”场景。
2024-12-04
有哪些AI公司做家居场景,有什么具体的应用
以下是一些在家居场景有应用的 AI 公司及具体应用: 小米:智能家居系统,利用物联网技术和机器学习,实现家居设备的智能化控制,可通过手机 APP 或语音控制家居设备。 科沃斯:扫地机器人的调度系统,运用机器学习和物联网技术,优化工作安排,提高清洁效率,如在电量不足时自动返回充电并继续未完成的清洁任务。 好好住 APP:作为家居用品推荐平台,通过数据分析和自然语言处理,根据用户的家居风格、需求和预算推荐适合的家居用品,比如正在装修卧室时推荐合适的床、床垫、灯具等。
2024-12-02
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方,要求举出实例。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 目前人工智能在医疗领域的误诊案例时有发生,比如某些智能诊断系统对复杂病症的判断失误,导致患者延误治疗,这难道还能让我们立刻全面拥抱它吗? 2. 人工智能技术在医疗数据安全方面存在诸多隐患,像近期发生的多起医疗数据泄露事件,给患者带来极大困扰,在这种情况下,怎么能立刻全面拥抱? 3. 人工智能在医疗器械的研发中,由于算法偏见,可能会导致某些特定人群无法受益,例如某些心脏起搏器的智能调控系统对特定体质患者效果不佳,这能说明应该立刻全面拥抱吗? 4. 当下人工智能技术的高昂成本使得许多医疗机构望而却步,比如一些小型医院根本无力承担智能医疗设备的购置和维护费用,这难道不影响全面拥抱的可行性吗? 5. 人工智能在医疗领域的法规和监管还不完善,比如某些智能手术机器人的操作规范尚未明确,一旦出现问题,责任难以界定,这样能立刻全面拥抱吗? 6. 虽然人工智能在某些方面提高了医疗效率,但也导致了部分医疗人员的失业,引发社会就业问题,这难道不是我们需要谨慎对待、不能立刻全面拥抱的原因吗?
2024-12-01