Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

中国AIGC应用全景图谱

Answer

中国 AIGC 应用全景图谱

AIGC(AI Generated Content)是指利用人工智能技术生成的内容,是继用户生成内容(UGC)、专业生产内容(PGC)之后的新型内容生产方式。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等形成了共同监管的形势。

AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT-4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。

AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面:

  1. 个性化营销内容创作:AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。
  2. 客户服务对话系统:基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。
  3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。
  4. CRM 数据分析报告生成:AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。
  5. 智能翻译和本地化:AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。
  6. 虚拟数字人和营销视频内容生成:AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。
  7. 客户反馈分析:AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。

总之,AIGC 在 CRM 领域的应用可以帮助企业提高客户满意度、提升销售业绩、降低运营成本,从而实现更好的客户关系管理。你可以在知识库的研究报告目录下找到。

Content generated by AI large model, please carefully verify (powered by aily)

References

2024AIGC法律风险研究报告(更新版).pdf

1.4本章小结GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和GeminiUltra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。

问:AIGC 在 CRM 中有什么应用?

AIGC(AI生成性内容)在CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面:1.个性化营销内容创作AIGC可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。1.客户服务对话系统基于AIGC的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。1.产品推荐引擎借助AIGC生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。1.CRM数据分析报告生成AIGC可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。1.智能翻译和本地化AIGC技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。1.虚拟数字人和营销视频内容生成AIGC可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。1.客户反馈分析AIGC可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。

AIGC常见名词解释(字典篇)

AIGC:AI generated content,又称为生成式AI,意为人工智能生成内容。例如AI文本续写,文字转图像的AI图、AI主持人等,都属于AIGC的应用。类似的名词缩写还有UGC(普通用户生产),PGC(专业用户生产)等。能进行AIGC的产品项目也很多,能进行AIGC的媒介也很多包括且不限于语言文字类:OpenAI的GPT,Google的Bard,百度的文心一言,还有一种国内大佬下场要做的的LLM都是语言类的。语音声音类:Google的WaveNet,微软的Deep Nerual Network,百度的DeepSpeech等,还有合成AI孙燕姿大火的开源模型Sovits。图片美术类:早期有GEN等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的Midjourney,先驱者谷歌的Disco Diffusion,一直在排队测试的OpenAI的Dalle·2,以及stability ai和runaway共同推出的Stable Diffusion...

Others are asking
人工智能生成内容(AIGC)感悟600字
以下是为您生成的 600 字左右关于人工智能生成内容(AIGC)的感悟: AIGC 作为当今科技领域的热门话题,正以惊人的速度改变着我们的生活和工作方式。 AIGC 强调的是利用人工智能技术生成各种内容,包括文本、图像、音频和视频等。它并非简单的技术堆砌,而是多种先进技术融合的成果。例如,Transformer 模型在语言处理和多模态领域的应用,为 AIGC 提供了强大的支撑。 从原理上看,AIGC 涉及多种生成算法,如 VAE、GAN、FlowModel 和 Diffusion Model 等。这些算法使得机器能够创造出具有一定质量和创意的内容。同时,还有像 IS 和 FID 这样的评价指标来衡量生成图片的质量。 在实际应用中,AIGC 展现出了巨大的潜力。它可以自动撰写新闻文章,为媒体行业带来效率的提升;能够生成艺术画作,为艺术创作注入新的活力;可以创作音乐,丰富音乐领域的多样性;还能制作视频游戏内容,为娱乐产业增添新的元素。 ChatGPT 作为 AIGC 在文本生成领域的杰出代表,充分展示了 AIGC 的强大能力。它通过预训练和大量的数据投喂,能够与用户进行流畅且相关的文本交流,仿佛在玩“文字接龙游戏”。 然而,AIGC 也面临一些挑战和问题。比如生成内容的准确性和可靠性需要进一步提高,版权和伦理问题也需要引起重视。但不可否认的是,AIGC 为我们开启了一扇充满无限可能的大门,让我们对未来充满期待。随着技术的不断进步和完善,相信 AIGC 将在更多领域发挥重要作用,为人类创造更多的价值。
2025-03-01
人工智能生成内容(AIGC)的突破、对齐及产业培育,感悟
以下是关于人工智能生成内容(AIGC)的突破、对齐及产业培育的感悟: 一、原理与概念 1. 人工智能(AI):是一种目标,让机器展现智慧,简称 AI。 2. 生成式人工智能(GenAI):目标是让机器产生复杂有结构的内容,简称 GenAI。 3. 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因有很多层所以叫深度),神经网络可用于多种学习方式。 5. 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:是 AIGC 技术的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 二、AIGC 的特点与应用 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 三、相关概念的关系与区别 AGI、GenAI、AIGC 几个概念有所区别与联系,具体可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。 四、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-01
AIGC是什么?
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-03-01
aigc智能体技能提升 ,需要掌握哪些知识
要提升 AIGC 智能体技能,需要掌握以下知识: 1. 对 AI 及提示词工程有清晰的理解。 2. 掌握 Python 语言,以便能搓更多智能体。 3. 了解向量数据库,如 Milvus 等。 4. 熟悉 Web 框架,如 FastAPI 框架,掌握流传输、负载限流等相关技术,实现与前端或业务后端的接口对接。 5. 学会提出具体且有详细背景信息的问题,以从 ChatGPT 等模型获得更精准的答案。 6. 不断积累行业领域知识,达到能较好操纵 AI 完成复杂任务的程度。
2025-02-26
AIGC开课准备
以下是关于 AIGC 开课准备的相关信息: 北京市新英才学校的师生已在利用生成式 AI 开展多种活动,如跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师借助 AIGC 备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中,她曾在美国范德堡大学读研究生,在创新学校做过老师,还在腾讯做过教育产品经理。 魏一然表示学生对 AIGC 的认知和理解差异很大,部分学生几乎一无所知,而小部分学生比老师还懂。学校领导层重视人工智能教育的发展,鼓励老师探索新方式和工具,目前还在探索初级阶段,但已有一定经验和成果。 关于 AI 版权分享课: 直播准备工作包括共享屏幕调试、微信直播与飞书直播的设置、人员操作界面的准备等。 人员任务安排方面,谢家炜负责投屏分享、刘洋协调沟通、咯咯哒操作相关界面等。 探讨了 AI 版权问题,涉及声音权、IP 形象版权等,如用他人声音做二创并发布到公共平台可能侵权,AI 设计的 IP 形象版权认定及商标申请等。 会收集观众在直播平台提出的问题,后续统一解答。 介绍了版权基础知识,包括版权是知识产权的一部分,商标和专利的相关内容。 对比了传统作品与 AI 生成作品在版权方面的情况。 说明了版权基本常识,如版权无需向国家申请注册,作品完成即有版权,版权登记是法律证据,国外作品也有版权,版权本质是作者对作品传播的控制权。 指出了 AI 内容生成的侵权情形,如不知情时模型厂商用他人版权作品作训练数据,用户可能无辜躺枪,故意生成与他人风格相似作品等可能构成侵权。
2025-02-26
我要学习AIGC ,零基础,刚接触,请给我制定一个系统的学习清单
以下是为您制定的零基础学习 AIGC 的系统学习清单: 1. 阅读彭博社对谷歌 CEO Sundar Pichai 的访谈,了解关于搜索未来、Gemini 构建、与微软和 OpenAI 竞争、美中在 AI 方面的竞争以及谷歌文化挑战等内容,同时关注 Google 对 AI 技术未来包括 AGI 的承诺和看法。 2. 查看 Elicit 发布的机器学习必读清单,系统学习机器学习基础、Transformer 与基础模型、训练与微调、推理与运行策略等方面,从基础概念入门到深度强化学习和反向传播等进阶内容,深入了解 Transformer 架构以及训练和精调语言模型的方法与策略,分析大语言模型如何处理复杂推理和解决问题的任务。 3. 学习提示工程基础,掌握三种高级提示工程技巧,包括思维链(CoT)提示、思维树(ToT)提示和思维图(GoT)提示。 4. 观看【AI 学习笔记】小白如何理解技术原理与建立框架的相关内容,了解什么是 AI 大模型及其原理,包括生成式 AI 生成的内容(AIGC)、相关技术名词(如 AI、机器学习、监督学习、无监督学习、强化学习、深度学习、生成式 AI、LLM 等)以及技术里程碑(如谷歌团队发表的《Attention is All You Need》论文提出的 Transformer 模型)。
2025-02-24
知识图谱构建
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱构建的关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,如实体抽取(命名实体识别)、关系抽取(提取实体间关联关系)、属性抽取(采集特定实体的属性信息)。 2. 知识表示:包括属性图、三元组等。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐(消除实体冲突等不一致性问题)、知识加工(统一管理知识)、本体构建(明确定义概念联系)、质量评估(计算知识置信度)、知识更新(迭代扩展知识)。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 LLM 落地思考方面,NLP 与知识图谱是主要的落地类型,但存在一些问题。如实现某个 NLP 任务时,需要大量人工标注和长时间训练,交付后较难新增意图和泛化任务,有时使用句式规则方式更好维护更新;构建知识图谱复杂,需与行业专家深度讨论,预见企业长远业务发展制定 schema,周期长且易与业务错位。而 LLM 出现后对 NLP、NLG、KG 有较大提升,带来更好更多的落地可能。 在以问题驱动的 AI+内容创作中,随着学习深入,可使用大模型帮助构建和扩展知识图谱。
2025-02-27
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-02-27
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12
以知识图谱的形式生成一张涉及大模型概念的知识图谱
以下是一张涉及大模型概念的知识图谱: 大模型 Embedding 技术 句子和文档嵌入 Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。 Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。 Transformers Sentence Embeddings:如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入 Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 图 Embeddings:用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 关键技术标准 机器学习标准:规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。 知识图谱标准:规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 大模型标准:规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。 自然语言处理标准:规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。 智能语音标准:规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。 计算机视觉标准:规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。 生物特征识别标准:规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。 国内大模型 通用模型:如文心一言、讯飞星火等,处理自然语言。 垂直模型:专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 大模型的体验 以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了 Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。 大语言模型的工作原理 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用 b 链形容大小。 Transformer 架构:Transformer 是大语言模型训练架构,17 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 的分类和法则 分为 system prompt、user prompt 和 assistant prompt。 写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG 概念:未对 RAG 的具体内容进行详细阐述,仅提出了这个概念。
2025-02-11
我是一名初中老师,我想了解符合我应用的知识图谱的相关知识
很抱歉,目前没有关于初中老师适用的知识图谱的相关具体内容。但一般来说,知识图谱是一种以图形化方式展示知识之间关系的技术。对于初中老师而言,知识图谱可以用于组织和呈现学科知识,帮助学生更好地理解知识点之间的关联。例如在数学学科中,可以将代数、几何等不同领域的知识点通过知识图谱进行关联,让学生清晰看到知识的体系结构。您可以根据教学的具体学科和需求,有针对性地构建和运用知识图谱。
2025-02-09
人工智能历史图谱
人工智能的历史可以追溯到二十世纪中叶。 起初,符号推理流行,带来了专家系统等重要进展,但因提取知识复杂、成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今基于神经网络和强化学习,能从自身错误中学习,学习速度快于人类。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 等是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得成功。 近期神经网络研究在 2010 年左右有巨大发展,大型公共数据集出现,如 ImageNet 催生了相关挑战赛。2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率,此后神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 在过去几年,大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据,可先预训练再针对具体任务专门化。
2024-12-25
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21
亚马逊大语言模型全景培训
以下是关于亚马逊大语言模型全景培训的相关内容: Andrej Karpathy 亲授的大语言模型入门讲座提到: 1. 大型语言模型(LLMs):神经网络实际上是下一个词预测网络,通过给它一些单词来预测下一个单词。尽管下一个单词预测任务看似简单,但它迫使神经网络学习大量关于世界的信息,并将其编码在参数中。例如,预测关于露丝·汉德勒的内容时,模型参数需学习相关知识。模型推理是生成接下来的单词,通过采样选择单词并反馈回模型获取下一个单词,从而“梦想”出类似互联网文档的内容,如 Java 代码、亚马逊产品、维基百科文章等。 2. 获取辅助模型的方式:保持优化相同,更换训练数据集。过去对互联网文档训练,现在替换为手动收集的数据集,通过雇用人员按标签说明提问并写下答案。预训练阶段文本量大但质量低,第二阶段更看重质量而非数量,文档少但都是高质量对话。 该讲座的作者是天空之城城主,来源为 https://mp.weixin.qq.com/s/fmb4nvIEA9AC5JpNPWN7Q ,宝玉的另一翻译版本为 https://twitter.com/dotey/status/1728959646138880026 。讲座分为三大部分,包括第一部分的大型语言模型(LLMs)、第二部分的 LLM 的未来、第三部分的 LLM 安全性。Andrej Karpathy 近期进行了一场 30 分钟的入门讲座,虽未录制,但因受欢迎决定重新录制并上传至 YouTube 平台。
2024-12-13
2024年AI公司全景图
以下是 2024 年 AI 公司的相关信息: AI 产业的产业链结构大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。但未找到一张满意的展示上中下游重点企业(或产品)的图,若您对图中不了解的公司/平台(或产品),建议搜索了解。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:20240313 融资 1.11 亿美元,A 轮,主营 AI 药物发现和精准医疗。 Together AI:20240313 融资 1.06 亿美元,A 轮,主营 AI 基础设施和开源生成。 Glean:20240227 融资 2.03 亿美元,D 轮,主营 AI 驱动企业搜索。 Figure:20240224 融资 6.75 亿美元,B 轮,主营 AI 机器人。 Abridge:20240223 融资 1.5 亿美元,C 轮,主营 AI 医疗对话转录。 Recogni:20240220 融资 1.02 亿美元,C 轮,主营 AI 接口解决方案。 2024 年的一些 AI 发展趋势: AI 将引领“智能即服务”的新服务模式,重塑工作和生活,重新赋能芯片和云计算行业,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显。 企业竞争策略分化,大模型争霸,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上备受瞩目的公司。
2024-11-20
量子位:2024中国AIGC广告营销产业全景报告
以下是关于《量子位:2024 中国 AIGC 广告营销产业全景报告》的相关信息: 生成式 AI 从供给端到需求端对广告营销各环节玩家造成冲击。在工作流程方面,AI 最先赋能策略洞察与内容生产,大模型加持的数字人带来全新交互体验。在典型场景中,创意生产工具呈平民化趋势,品牌可以为“一个人”量身定制广告。同时,生成式 AI 在创新广告形式、实现自动化营销、企业商业模式革新上重塑了广告营销格局。
2024-09-30
安防行业如何应用好AI
在安防行业应用好 AI 可以从以下几个方面考虑: 1. 技术层面: 大模型时代,训练大模型涉及 GPU 调用、模型架构设计、数据处理、调优等多个环节,具有较高的资源门槛和技术复杂度。 2. 竞争态势: 当计算机视觉的商业化场景转向安防后,创业公司面临来自安防行业巨头的竞争。创业公司虽更懂 AI 视觉识别,但需从头学习研发硬件产品、搭建营销体系;而巨头有完善的供应链和销售体系,但需要引入 AI 技术。 大模型时代的创业公司对手从海康威视换成了资源更多、决心明确的 BAT 和字节等大公司。 3. 创新与生态: 新技术能否找到新生态至关重要,包括新的供应链、新的硬件载体、新的渠道和新的需求与用户来源。 创业公司和大公司间的竞赛结果取决于新技术能在多大程度上颠覆原有体验,新技术的进入门槛、赛道长度以及能否找到新生态。 此外,在管理方面,要善于为 AI 应用提供明确的沟通和上下文,明晰其能力边界,合理授权并监督检查,擅长任务拆解和整合以提升协作效率。同时,医保严禁 AI 自动开处方,而在其他领域如 Coinbase 全面推动 AI 应用,提高了效率并广泛应用于多个方面。
2025-03-02
DeepSeek常见应用技巧
DeepSeek 常见应用技巧包括以下方面: 1. 高阶能力调用: 文风转换矩阵,如作家风格移植(用鲁迅杂文风格写职场 PUA 现象)、文体杂交(将产品说明书改写成《史记》列传格式)、学术口语化(把这篇论文摘要翻译成菜市场大妈能听懂的话)。 领域穿透技术,如行业黑话破解(解释 Web3 领域的“胖协议瘦应用”理论)。 2. 场景化实战策略: 商业决策支持。 创意内容生成。 技术方案论证。 3. 效能增强技巧: 对话记忆管理,包括上下文锚定(记住当前讨论的芯片型号是麒麟 9010)、信息回溯(请复述之前确认的三个设计原则)、焦点重置(回到最初讨论的供应链问题)。 输出质量控制,如针对过度抽象(请具体说明第三步操作中的温度控制参数)、信息过载(用电梯演讲格式重新组织结论)、风格偏移(回归商务报告语气,删除比喻修辞)等问题的修正指令。 4. 特殊场景解决方案: 长文本创作,如分段接力法(先完成故事大纲→逐章扩展→最后进行伏笔校验)、逻辑粘合剂(确保新章节与前文的三处细节呼应)。 敏感内容处理,如概念脱敏法(用经济学原理类比说明网络审查机制)、场景移植法(假设在火星殖民地讨论该议题)。 Deepseek 时代提示词的针对性技巧: 1. 身份定位技巧,目的是让 AI 理解您的背景和专业水平,例如差的表述:“帮我写一篇营销方案”,好的表述:“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧,目的是提供具体的应用场景和限制条件,例如差的表述:“写一篇新品发布文案”,好的表述:“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 2535 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧,目的是指定具体的输出格式和内容结构,例如差的表述:“分析最近的新能源汽车销量数据”,好的表述:“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧,目的是将复杂问题拆解为可管理的小任务,例如差的表述:“怎么做短视频运营?”,好的表述:“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧,目的是通过追问获得更精准的答案,例如第一轮:“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”,追问 2:“可以增加一些具体的用户案例来支撑观点吗?”。 6. 深度思考引导技巧,目的是获得更深入的分析和见解。 以下是一些用户使用 DeepSeek 的实际情况: 帮我脑爆活动方案(AJ 杭州)。 会议纪要给它出方案思考非常到位,稍加修改就可以呈现高质量的会议总结。 本地搭超级 AI 助手(陈星北京)。 DS+飞书批量处理客户评论(Lily 温州)。 分析总结复盘内容。 生成专业专用软件详细使用过程,非常正确(兰州)。 辰、李意儿用。 变现当然。 Candice 代码编写。 帮我写小说框架。 让 ds 给出拓展市场的梳理角度和咨询梳理。 写党员的用自我批评用古诗改简历(苏州)。 学长刚蝈。 探索外太空。 大创苏州 a 文案胡泽华改简历。 园子。 写文案。 Forget,之前用过 deepseek 分析过感情问题,补充了对于心理学的一些空缺,了解了更多。 Ecfa 苏州一晚三个营销方案,Deepseek 一晚,干了之前一个月的活。 Yvonne 写论文。 AI 中医+心理咨询师。 AI 育儿,生图 AI 撰写提示词辅食(北京,赵赵)。 帮我。 帮我生帮。 短视频脚本。当百度用。 写方案,做图。 用 a 帮我。 南京得一写小红书笔记,八字算命。 写周报用。 帮我做设计头脑风暴。 上海 BaoBig 粒。 Guigui 北京。 算命。 分析。 柯柯武汉做网站葉用。 投喂大量的 deepseek。
2025-03-01
分类思想在代数领域的应用
在代数领域,分类思想有着广泛的应用,主要体现在以下几个方面: 1. 线性代数:是机器学习中常用的数学主题,在基本的模型分类、聚类、回归任务中,如线性回归、SVM、KNN、随机森林等算法中都有极高的可用性。对于数据集中存在的每个特征,通常都有大量样本,考虑具有 n 个数据样本的特征向量,它将是一个 n 维向量,了解 n 维向量的属性(如点积、叉积、加法和减法)至关重要。 2. 向量之间的距离:在机器学习中,每个特征都被视为一维,通常数据集包含大量特征。首先计算两个特征之间的距离来观察它们的相似性,因此,计算两个 n 维向量之间的距离的知识至关重要。距离计算的直接用例可以在 KNN 和 KMeans 算法中找到。 3. 超平面投影:在 SVM 中,尝试找到 n 维样本与 n 维平面之间的距离,通常会将该样本投影到超平面上,因此平面投影的概念和超平面的知识至关重要。 此外,在解决数学问题时,如陶哲轩解决新问题时,会用到多种方法,包括理解问题、简化表达、使用归纳法、利用生成函数、进行渐近分析、收集数值证据、寻找类似问题以及寻求反馈和合作等。 在神经网络和深度学习中,当函数的输出值是一个有限集时(例如逻辑函数),给带权重的和设置阈值是没问题的,问题在于对输入数据做好合适的标签(分类问题)。例如感知机可以用来学习对 20×20 像素输入中的简单形状进行正确分类。
2025-03-01
设计面向青少年的AI课程大纲,核心是围绕以DeepSeek技术专题为核心的各类技术到应用的设计
很抱歉,目前没有关于以 DeepSeek 技术专题为核心设计面向青少年的 AI 课程大纲的相关内容。但我可以为您提供一个通用的以技术到应用为思路的 AI 课程大纲框架供您参考: 一、课程简介 介绍课程的目标、重要性以及学习 AI 对青少年的益处。 二、基础知识 1. 什么是 AI 及其发展历程 2. 常见的 AI 应用领域 三、DeepSeek 技术基础 1. DeepSeek 技术的原理 2. 相关算法和模型 四、技术应用实践 1. 利用 DeepSeek 技术进行图像识别项目 2. 基于 DeepSeek 的自然语言处理应用 五、案例分析 1. 成功运用 DeepSeek 技术的实际案例 2. 案例中的创新点和可借鉴之处 六、创新与拓展 1. 鼓励学生提出基于 DeepSeek 技术的新应用想法 2. 小组讨论和展示 七、课程总结与回顾 复习重点知识,总结学习成果。 您可以根据实际需求和教学条件对上述大纲进行调整和完善。
2025-03-01
我是一名港口行业国有企业职工培训专员,想结合当前AI技术应用,出一份既涵盖管理人员序列、职能人员序列,又包括技能操作序列职工的,可直接执行的年度培训计划文案,字数不超过1000字。
以下是为您提供的一份结合当前 AI 技术应用的港口行业国有企业职工年度培训计划文案,希望对您有所帮助: 一、培训目标 提升管理人员、职能人员和技能操作序列职工在 AI 技术应用方面的知识和技能,增强企业整体竞争力。 二、培训对象 管理人员序列、职能人员序列、技能操作序列职工。 三、培训内容 1. 管理人员序列 AI 技术在企业管理中的应用趋势与案例分析。 基于 AI 的决策支持系统的使用与解读。 2. 职能人员序列 AI 办公软件的应用技巧,如自动化流程处理。 利用 AI 进行数据分析与报告生成。 3. 技能操作序列职工 港口智能化设备中 AI 技术的原理与操作维护。 基于 AI 的安全监控系统的操作与应急处理。 四、培训方式 1. 线上课程:利用网络平台提供相关课程,方便职工自主学习。 2. 线下讲座:邀请专家进行现场讲解和互动交流。 3. 实践操作:在实际工作场景中进行模拟训练和实际操作。 五、培训时间安排 1. 每月安排一次线上课程。 2. 每季度组织一次线下讲座。 3. 不定期进行实践操作培训,根据实际工作需求灵活安排。 六、培训效果评估 通过考试、实际操作考核、项目成果评估等方式,检验职工的学习成果,并将其与绩效考核挂钩,激励职工积极参与培训。
2025-02-28
ai在自媒体行业的应用
AI 在自媒体行业有广泛的应用,主要包括以下方面: 写作方面: 1. 项目启动:确定目标客户群体,如大学生、职场人士、自媒体从业者等,并选择合适的 AI 写作工具以满足不同客户需求。 2. 准备阶段:学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能,同时构建团队,培养和扩充团队成员以提高运营效率。 3. 商业模式构建:确定服务内容,如提供论文、报告、文案等直接写作服务,并制定质量控制标准以确保写作内容满足客户要求。 4. 运营与推广:在淘宝等电商平台上开设店铺展示并销售写作服务,建立写作培训社群分享写作技巧和 AI 应用经验以提升品牌影响力,通过社交媒体和线下活动进行品牌和社群建设,与绘画团队、其他写作工作室等合作共同开发新项目。 5. 项目优化与发展:持续关注 AI 技术进展以提升服务质量和效率,根据市场需求拓展新的服务和产品,并收集客户反馈不断优化和改进服务。 AI 绘画方面: 1. 个体成为自媒体博主。 2. 个体商户应用。 3. 实体印刷(如 T 恤、杯子实物等)。 4. AI 摄影。 5. 设计接单。 6. AI 定制萌娃头像。 7. 电商商品。 8. 自媒体素材。 9. AI 服装预售。 10. AI 视频接单。 11. 培训老师。 公司方面: 1. 设计质量和效率提升。 2. AI 绘画相关应用开发。 3. CV 方面算法应用。 此外,还有以 AI 主题自媒体短视频创作工作坊为例的应用: 1. 开场介绍(15 分钟):主持人介绍活动目的、流程和期望成果,并展示相关案例激发创意思路。 2. 案例和工具介绍(30 分钟):进行案例展示和工具介绍。 3. 创意策划与制作准备(45 分钟):团队成员分工,明确各自负责的部分,讨论并撰写用于辅助制作的 prompts,制定具体的制作计划和时间表。 4. 短视频制作(1 小时):各组根据策划进行视频拍摄、编辑和制作,主持人巡回指导提供必要帮助。 5. 成品展示与评估(30 分钟):各组展示完成的短视频,共享反馈和建议互相学习提升。 6. 总结讨论(15 分钟):总结学习经验,分享创作心得,讨论 AI 在自媒体领域的应用前景。 该工作坊具有案例激发、团队协作、实践指导、创意自由和综合能力提升等特色。通过本次工作坊,参与者不仅能够掌握如何创作吸引人的 AI 主题短视频,还能提升团队协作和创意思维能力,为未来的自媒体创作和 AI 应用奠定坚实基础。
2025-02-28