直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

中国AIGC应用全景图谱

回答

中国 AIGC 应用全景图谱

AIGC(AI Generated Content)是指利用人工智能技术生成的内容,是继用户生成内容(UGC)、专业生产内容(PGC)之后的新型内容生产方式。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等形成了共同监管的形势。

AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT-4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。

AIGC 在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面:

  1. 个性化营销内容创作:AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。
  2. 客户服务对话系统:基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。
  3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。
  4. CRM 数据分析报告生成:AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。
  5. 智能翻译和本地化:AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。
  6. 虚拟数字人和营销视频内容生成:AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。
  7. 客户反馈分析:AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。

总之,AIGC 在 CRM 领域的应用可以帮助企业提高客户满意度、提升销售业绩、降低运营成本,从而实现更好的客户关系管理。你可以在知识库的研究报告目录下找到。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024AIGC法律风险研究报告(更新版).pdf

1.4本章小结GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和GeminiUltra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。

问:AIGC 在 CRM 中有什么应用?

AIGC(AI生成性内容)在CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面:1.个性化营销内容创作AIGC可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。1.客户服务对话系统基于AIGC的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。1.产品推荐引擎借助AIGC生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。1.CRM数据分析报告生成AIGC可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。1.智能翻译和本地化AIGC技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。1.虚拟数字人和营销视频内容生成AIGC可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。1.客户反馈分析AIGC可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。

AIGC常见名词解释(字典篇)

AIGC:AI generated content,又称为生成式AI,意为人工智能生成内容。例如AI文本续写,文字转图像的AI图、AI主持人等,都属于AIGC的应用。类似的名词缩写还有UGC(普通用户生产),PGC(专业用户生产)等。能进行AIGC的产品项目也很多,能进行AIGC的媒介也很多包括且不限于语言文字类:OpenAI的GPT,Google的Bard,百度的文心一言,还有一种国内大佬下场要做的的LLM都是语言类的。语音声音类:Google的WaveNet,微软的Deep Nerual Network,百度的DeepSpeech等,还有合成AI孙燕姿大火的开源模型Sovits。图片美术类:早期有GEN等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的Midjourney,先驱者谷歌的Disco Diffusion,一直在排队测试的OpenAI的Dalle·2,以及stability ai和runaway共同推出的Stable Diffusion...

其他人在问
我想要一个AIGC 图像审查领域的专家
以下是关于 AIGC 图像审查领域的相关信息: 如何判断一张图片是否 AI 生成: AI 技术自身带来造假难题,可通过一些网站如 ILLUMINARTY(https://app.illuminarty.ai/)对大量图片数据抓取和分析来判断画作属性,但存在测试中真实摄影作品被误判为 AI 作图的情况,这是因为鉴定 AI 的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 从不同角度看鉴别 AIGC 的需求: 技术出身的朋友多出于对 AI 产物底层逻辑的追溯兴趣,关心能否通过数据检测等手段实现鉴别并应用于创造收益。 产业领域的朋友面对 AI 技术冲击,关注其在工作流中的影响,以求应对可能的裁员风险。 法律背景的朋友认为鉴别 AIGC 对未来著作权法律判定有意义,首例 AIGC 侵权案件悬而未决,需判定 AI 作品中智力投入占比。 最近招聘信息:猿印教育招聘 AIGC 图像生成算法工程师/专家,工作地点在北京五道口附近。简历发送至:stephen.wang@yyinedu.com 。岗位职责包括开发针对性图像生成解决方案、负责模型部署和推理性能优化、推动团队技术水平提升等。任职要求为计算机相关专业本科及以上学历,具备扎实计算机基础知识,熟练掌握 Python 语言和主流深度学习框架,对相关理论和方法有深入理解,具有良好的学习、沟通和团队合作能力。
2024-12-22
我的论文aicg率太高了,我如何降低aigc率
以下是一些常用的 AIGC 论文检测网站和工具,以及它们的功能和使用方法,可帮助您降低论文的 AIGC 率: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-12-20
适合游戏设计的aigc平台
以下是一些适合游戏设计的 AIGC 平台及相关案例: 1. 上海人工智能实验室旗下的 OpenInnoLab平台:北京市新英才学校的“AI 创作家”课程中,学生使用该平台的文生图 AI 工具生成桌游卡牌背后的图案。 2. 在“DragonX”宠物龙养成游戏中,Demo 的原则为 AIGC 的最大化,玩法内容基本都使用 AIGC 来生产游戏内容,包括世界观、核心循环、核心玩法等方面。 3. 关于游戏设计与 AIGC 的相关讨论:“质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期”涵盖了游戏与生成式 AI 的发展趋势、游戏+AI 制作的讨论、资本市场对 AI+游戏的看法、AI 对游戏领域带来的变革以及新 AI 游戏面临的问题等多方面内容。
2024-12-18
通往AIGC之路
以下是为您整合的关于“通往 AGI 之路”的相关内容: “通往 AGI 之路”不仅是开源的 AI 知识库,更是连接 AI 学习者、实践者、创新者的社区,基于无边界组织完成了 AI 春晚、“离谱村”短片等共创项目。 【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。扫码添加菩萨老师助理,了解更多信息。 通用人工智能(AGI),也叫强人工智能,通常这玩意出现时也就是奇点科技大爆炸的那一刻,科技推动文明呈指数级增长。也许在 5 年后,也许在 2035 年,也许在 2050 年。通往通用人工智能的路也许还长,但它已如海那边吹过来的风,还没有看到大海,就已闻到潮湿腥咸的味道。 在 OPEN AI 发布 gpt3.5 引爆 AIGC 潮流不久,“通往 AGI 之路”由几个对 AIGC 感兴趣的人发起组建。其中有个设计师为其作了一套品牌 VI,设计师三思用 Midjourney 生成了小鹿吉祥物三视图。彭青云在看到相关内容后,希望为其做小鹿 IP 的延展,并获得了相关权限。
2024-12-16
问我一个关于AIGC的问题。
以下是一些关于 AIGC 的问题供您参考: 1. AIGC 在内容创作领域的优势和局限性分别是什么? 2. AIGC 如何影响传统的内容创作行业? 3. 目前 AIGC 在图像生成方面有哪些最新的技术突破? 4. 如何评估 AIGC 生成内容的质量和准确性? 5. AIGC 在视频生成领域的应用前景如何? 6. 与 UGC 和 PGC 相比,AIGC 在内容多样性方面表现如何? 7. 哪些行业最有可能率先广泛应用 AIGC 技术? 8. Gen AI/Generative AI 与 AIGC 在技术实现上有哪些关键差异? 9. ChatGPT 作为一种服务,与其他类似的聊天应用有何不同? 10. 未来 AIGC 工具在产品原型设计方面可能会有哪些创新?
2024-12-14
怎样学习AIGC
以下是关于学习 AIGC 的相关内容: AIGC 相关概念: 人工智能(AI):一种目标,让机器展现智慧,简称 AI。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容,简称 GenAI。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,简称 LLMs。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT 是 AIGC 技术的一个应用实例,代表了 AIGC 在文本生成领域的进展。 最近感悟: 半个月没更新文章,对 AIGC 做了更系统、深入的学习和调研。 参加了 3 场 AI 线下活动,在 AI 社群中浪迹一个多月,感到兴奋和热血,认为 AIGC 在 2024 年的发展类似 2014 年移动互联网时代大量新兴 APP 的涌现。 感悟包括:AI 领域新名词、新概念等丰富多彩;AI 知识付费领域“鱼龙混杂”;AI 发展迅速,学习 AI 知识很重要。 AIGC 学习三步法: 具体内容未给出,如需了解,请补充更多信息。 AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图片。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址未给出。
2024-12-14
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。 2. 知识表示:如属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括向量数据库、关系型数据库和知识图谱。知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,允许智能体实时检索和整合最新外部信息。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合进世界模型。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的理解。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法。
2024-12-19
如何用ai工具构建某一课程的知识图谱
以下是用 AI 工具构建某一课程知识图谱的方法: 一键知识图谱方法: 用 kimichat 让 AI 拆解这本书的三级章节并按照 Markdown 产出内容: Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的 Markdown。 访问地址: 复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片: 访问地址: 推导知识图谱方法(可以参考下面 prompt 自己构建): 问题生成:使用大模型帮助生成一系列相关的、深入的问题。 探索性学习:将每个问题作为一个学习起点,利用 AI 搜索引擎和大模型进行深入探索。 知识图谱构建:随着学习的深入,使用大模型帮助构建和扩展知识图谱。 创造性应用:基于新获得的知识,尝试解决原问题或创造新的作品。 反思与迭代:定期反思学习过程,调整方向,并生成新的问题,形成持续学习和创作的循环。 此外,利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-03
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,实现数据、信息、方法、经验等知识的融合,形成高质量知识库。其中涉及实体对齐以消除不一致性问题,知识加工对知识统一管理,本体构建明确定义概念联系,质量评估计算知识置信度,知识更新迭代扩展现有知识。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括知识图谱,它以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。外置知识通常由外部数据库提供,能动态更新和调整,在实际应用中常采用 RAG 架构,结合检索和生成,通过检索外部知识源增强模型生成能力。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合到对世界的活跃模型中。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的元知识。知识表示的问题是找到在计算机中以数据形式有效表示知识并能自动化使用的方法,这是一个连续谱,简单的知识表示如算法不够灵活,自然语言功能强大但不利于自动化推理。
2024-11-03
帮我生成一个 AI 写作领域的产业图谱,只关注应用层,按照产品的类别来分类和举例
以下是 AI 写作领域应用层的产业图谱分类及举例: |序号|产品|主题|使用技术|市场规模|一句话介绍| ||||||| |1|Grammarly、秘塔写作猫|AI 智能写作助手|自然语言处理|数十亿美元|利用 AI 技术辅助用户进行高质量写作。| |2|阿里小蜜等电商客服|AI 智能客服外包服务|自然语言处理、机器学习|数十亿美元|为企业提供智能客服解决方案。|
2024-10-28
帮我生成一个 AI 写作领域的产业图谱
AI 写作领域的产业图谱大致可分为上游、中游和下游三个部分: 上游是基础设施层,包括数据与算力。 中游是技术层,涵盖模型与算法。 下游是应用层,涉及应用与分发。 对于这上中下游分别有哪些值得重点关注的企业(或产品),经过大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了相关图谱。但由于避免广告嫌疑,在此不展开对各家公司/平台(或产品)的详细说明。此图绘制于 2024 年 5 月,如果有不了解不认识的公司/平台(或产品),建议您搜索了解。
2024-10-28
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。 2. 知识表示:如属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 外置知识: 外置知识由外部数据库提供,能够动态更新和调整。涉及多种数据存储和组织方式,包括向量数据库、关系型数据库和知识图谱。向量数据库优化了向量检索操作,常用于处理和索引非结构化数据;关系型数据库通过表格形式存储结构化数据,支持复杂查询,适用于事务性数据存储;知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,它结合了检索和生成,通过检索外部知识源增强模型的生成能力。 知识表示: 知识是存在于我们脑海中、代表对世界理解的东西,通过活跃的学习过程从接收到的信息碎片整合而来。要区分知识与信息、数据,例如书籍内容实际是数据,我们阅读后转化为知识。通常用 DIKW 金字塔整合知识与其他相关概念,包含数据、信息、知识、智慧。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法,这是一个连续谱,左侧有简单但不灵活的表示方式如算法,右侧有功能强大但不适合自动化推理的自然语言等方式。
2024-10-23
亚马逊大语言模型全景培训
以下是关于亚马逊大语言模型全景培训的相关内容: Andrej Karpathy 亲授的大语言模型入门讲座提到: 1. 大型语言模型(LLMs):神经网络实际上是下一个词预测网络,通过给它一些单词来预测下一个单词。尽管下一个单词预测任务看似简单,但它迫使神经网络学习大量关于世界的信息,并将其编码在参数中。例如,预测关于露丝·汉德勒的内容时,模型参数需学习相关知识。模型推理是生成接下来的单词,通过采样选择单词并反馈回模型获取下一个单词,从而“梦想”出类似互联网文档的内容,如 Java 代码、亚马逊产品、维基百科文章等。 2. 获取辅助模型的方式:保持优化相同,更换训练数据集。过去对互联网文档训练,现在替换为手动收集的数据集,通过雇用人员按标签说明提问并写下答案。预训练阶段文本量大但质量低,第二阶段更看重质量而非数量,文档少但都是高质量对话。 该讲座的作者是天空之城城主,来源为 https://mp.weixin.qq.com/s/fmb4nvIEA9AC5JpNPWN7Q ,宝玉的另一翻译版本为 https://twitter.com/dotey/status/1728959646138880026 。讲座分为三大部分,包括第一部分的大型语言模型(LLMs)、第二部分的 LLM 的未来、第三部分的 LLM 安全性。Andrej Karpathy 近期进行了一场 30 分钟的入门讲座,虽未录制,但因受欢迎决定重新录制并上传至 YouTube 平台。
2024-12-13
2024年AI公司全景图
以下是 2024 年 AI 公司的相关信息: AI 产业的产业链结构大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。但未找到一张满意的展示上中下游重点企业(或产品)的图,若您对图中不了解的公司/平台(或产品),建议搜索了解。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:20240313 融资 1.11 亿美元,A 轮,主营 AI 药物发现和精准医疗。 Together AI:20240313 融资 1.06 亿美元,A 轮,主营 AI 基础设施和开源生成。 Glean:20240227 融资 2.03 亿美元,D 轮,主营 AI 驱动企业搜索。 Figure:20240224 融资 6.75 亿美元,B 轮,主营 AI 机器人。 Abridge:20240223 融资 1.5 亿美元,C 轮,主营 AI 医疗对话转录。 Recogni:20240220 融资 1.02 亿美元,C 轮,主营 AI 接口解决方案。 2024 年的一些 AI 发展趋势: AI 将引领“智能即服务”的新服务模式,重塑工作和生活,重新赋能芯片和云计算行业,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显。 企业竞争策略分化,大模型争霸,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上备受瞩目的公司。
2024-11-20
量子位:2024中国AIGC广告营销产业全景报告
以下是关于《量子位:2024 中国 AIGC 广告营销产业全景报告》的相关信息: 生成式 AI 从供给端到需求端对广告营销各环节玩家造成冲击。在工作流程方面,AI 最先赋能策略洞察与内容生产,大模型加持的数字人带来全新交互体验。在典型场景中,创意生产工具呈平民化趋势,品牌可以为“一个人”量身定制广告。同时,生成式 AI 在创新广告形式、实现自动化营销、企业商业模式革新上重塑了广告营销格局。
2024-09-30
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么
目前在游戏领域最前沿的 AI 技术点包括以下方面: 1. 生成式 AI:这是一种机器学习类别,计算机能根据用户提示生成新内容,在文本和图像方面应用较为成熟,甚至可用于创造具有完整性格的虚拟角色。 2. 智能对手的进化:早期游戏中的虚拟对手只是简单脚本程序,如今借助更快的微处理器和云技术,可构建大型神经网络,实现更复杂的模式识别和表示,使对手具备学习能力。 3. 未来发展方向: 探索将游戏环境中的成果迁移至现实世界,虽然在特定游戏环境中成果显著,但推广到现实世界仍面临诸多挑战。 利用 AIGC 技术实现游戏产业的生产力革命,如生成新的游戏内容、驱动非玩家角色、改进图像和声音效果等。 为通用人工智能的孵化提供帮助,经复杂游戏训练后的人工智能体有望在通用人工智能领域发挥作用。 此外,狭义的游戏人工智能研究致力于创造类人水平的智能体在多种游戏中战胜人类玩家,广义的还包括探索用于设计和开发游戏的人工智能技术,如游戏图像生成、关卡生成等。随着深度学习技术的发展,人工智能不仅用于“玩游戏”,还用于游戏的设计、开发和测试等多个方面。
2024-12-22
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
文字生成视频有哪些好的应用
以下是一些文字生成视频的好的应用: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要注意的是,Runway 是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 6. Genmo:相较于 Pika 和 Runway,生成视频的清晰度大幅提高,人像的稳定性和美观度强很多,支持镜头控制且控制粒度更细,但还没开放图片生成视频,只能用文字提示词。 7. VIGGLE:能直接通过文字描述让任何静态图动起来,能做各种动作,还能直接文字生成视频,进行各种角色混合和动作替换。其核心技术基于 JST1 模型,该模型是首个具有实际物理理解能力的视频3D 基础模型,能够根据用户需求,让任何角色按照指定方式进行运动。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。内容由 AI 大模型生成,请仔细甄别。
2024-12-21
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21