Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai大模型对亚马逊商家有什么作用

Answer

AI 大模型对亚马逊商家的作用主要体现在以下几个方面:

  1. 营销活动分析:可以帮助分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。
  2. 库存管理:能够预测需求,优化库存管理,减少积压和缺货情况。
  3. 支付和交易优化:分析不同支付方式对交易成功率的影响,优化支付流程。
  4. 客户服务:通过驱动聊天机器人提供 24/7 的服务,解答疑问,提高客户满意度。
  5. 市场分析:分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

中国大模型面临的真实问题:登顶路远,坠落一瞬

回顾OpenAI的发展历程,我们会发现一个关键因素:坚定的方向。对OpenAI而言,大模型从未是一个摇摆不定的选项,而是一条笔直的道路。他们将大部分资金投入到算力上,尤其是在英伟达A100芯片价格相对较低的时期。这种前瞻性的投资策略,为他们后来的成功奠定了基础。这种做法让人想起了亚马逊创始人杰夫・贝索斯的一句名言:"发明需要长期思维。"OpenAI的成功不仅仅是技术的突破,更是战略眼光和长期投入的结果。OpenAI的成功背后,是一场惊人的资源调动。根据第三方数据机构Sami Analysis的估算,OpenAI的硬件配置令人瞠目结舌:约3,617台HGX 100服务器,搭载近3万块英伟达GPU。这个数字足以让任何科技爱好者心跳加速。然而,这仅仅是冰山一角。投资方微软的支持更是锦上添花,为OpenAI量身打造了定制化的算力集群,进一步提升了GPU的效率。这种深度定制化的Approach,犹如为一辆超级跑车配备了专属的赛道。

问:如何用 AI 完成阿里巴巴营销技巧和产品页面优化

9.聊天机器人:AI驱动的聊天机器人可以提供24/7的客户服务,解答疑问,提高客户满意度。10.营销活动分析:AI可以分析不同营销活动的效果,帮助卖家了解哪些活动更能吸引顾客并产生销售。11.库存管理:AI可以帮助预测需求,优化库存管理,减少积压和缺货情况。12.支付和交易优化:AI可以分析不同的支付方式对交易成功率的影响,优化支付流程。13.社交媒体营销:AI可以帮助卖家在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。14.直播和视频营销:AI可以分析观众行为,帮助卖家优化直播和视频内容,提高观众参与度和转化率。通过这些步骤,AI可以帮助卖家在阿里巴巴平台上提高营销效果和产品页面的吸引力,从而增加销量和客户满意度。内容由AI大模型生成,请仔细甄别。

问:人工智能在汽车行业的应用案例

汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。1.电动化和能源管理:AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。1.共享出行服务:AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。1.语音助手和车载娱乐:AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。1.车辆远程监控和诊断:AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。内容由AI大模型生成,请仔细甄别。

Others are asking
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
如何部署本地AI?
部署本地 AI 可以参考以下内容: 1. 平台选择: 线上平台:出图速度快,不吃本地显卡配置,无需下载大模型,能参考其他创作者作品,但出图尺寸受限。 线下平台:可添加插件,不卡算力,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。 建议充分发挥线上和线下平台的优势,线上找参考、测试模型,线下作为主要出图工具。 2. 开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:电脑不符合要求的可使用在线工具,在线工具分为在线出图和云电脑两种,根据实际情况选择。 配台电脑:不建议一开始就配主机,玩几个月后还有兴趣再考虑,主机硬盘要大,显卡在预算内买最好。 3. 具体步骤(以把大模型接入小米音箱为例): 第四步:填写 API 服务,如智普、硅基等,其他模型的 API 端口参考官方文档。 第五步:语音服务,可参考官方说明,若有问题可自行尝试并反馈。 第六步:启动服务,在最上方可导出编辑内容为 json 格式,每次调整设置都需重置后重新启动,建议回答完毕后增加结束提示语以提高连续对话稳定性。 希望以上内容对您有所帮助。
2025-03-25
国内ai变成应用
国内 AI 应用发展迅速,在多个领域取得了突破: 早期应用:主要基于 NLP 技术,如聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但这些技术突破大多限于特定领域,模型应用范围相对狭窄。 新发展路线:OpenAI ChatGPT 等大型语言模型展示了新方向,通过大规模模型预训练,涌现出多功能于一体的智能应用。 编程工具:字节的 Trae 是很厉害的 AI 编程工具,国内版已上线,支持多款模型。目前处于公测阶段免费,能让不懂技术的人开发简单应用程序,未来超级产品经理或成为现实。 图像类产品: 可灵:由快手团队开发,用于生成高质量图像和视频,图像质量高,最初采用内测邀请制,现开放使用,价格相对较高,有不同收费选项。 通义万相:作为国产 AI 工具,在中文理解和处理方面出色,可选择多种艺术和图像风格,生成图像质量高、操作界面简洁直观、用户友好度高,可与阿里其他产品和服务无缝整合,目前免费,但存在一些局限性,如某些类型图像无法生成、处理非中文或国际化内容可能不够出色等。
2025-03-25
如何训练AI智能体
以下是关于训练 AI 智能体的一些信息: 1. 可以将一些创新的 prompt 融入工作流中,以更高效地训练智能体。这种方法不仅能改进现有的大语言模型,还能探索新的应用领域,实现低成本、高效能和模型效益最大化,突破单纯依赖算法的方式。 2. 采用流式训练方式提升训练速度和质量,例如将孔明灯换成泡泡,基于 Transformer 模型进行流匹配,这种方式优于扩大模型。 3. 利用多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。 4. 了解 AI 工程平台,如 define 等,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。以 coach 平台为例,新版本有很多模板,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用 APP,有新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 5. 了解一些为大模型提供数据、企业模型和算力服务的平台,如魔搭社区等,有按任务划分的模型库、数据集和在线应用供体验。
2025-03-25
mermaid编辑工具
Mermaid 是一款用于创建各种图表的工具,它支持多种类型的图表,如思维导图、时序图、UML 图等。以下是关于 Mermaid 编辑工具的一些信息: 可以使用 Mermaid 语法创建简单的思维导图,例如:GRAPH CODE 判断 大语言模型 自然语言处理 机器学习 深度学习 执行 文本分析 情感分析 算法优化 神经网络 结束。 可用于将代码转化为图表,如在“code to diagram”的搜索结果中,Mermaid 不仅支持十几种图像,还提供了在线编辑器,生成器的网址为:https://mermaid.live/ 。 可以通过 ChatGPT 结合自然语法生成 Mermaid 图形语法,生成流程包括确定制作目标、通过自然语言描述逻辑、在线校验测试是否成功。例如,要求 ChatGPT 基于给定内容生成高速公路上车辆切入场景的时序图。
2025-03-25
怎么零基础学习ai
以下是零基础学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是零基础还是中学生,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-03-25
亚马逊卖家爱用的生成产品图片工具
以下是一些亚马逊卖家爱用的生成产品图片工具: Flair(https://flair.ai/) Booth(https://www.booth.ai/) Bloom(https://bloom.ai/) 这些工具可以帮助品牌创建引人注目的产品照片,比如将挂在衣架上的连衣裙的静态照片变成女人穿着裙子在花园里行走的形象。未来,预计这些用途将变得极度个性化,例如一张沙发的登陆页面将展示该沙发摆放在您的公寓中的照片。 此外,对于阿里巴巴的营销技巧和产品页面优化,可以使用 AI 采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 帮助预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。
2025-02-22
适合处理亚马逊电商图片的ai工具
目前在处理亚马逊电商图片方面,常见的 AI 工具包括 Adobe Photoshop 的 AI 功能、Canva 等。Adobe Photoshop 的 AI 功能可以帮助您进行图像的优化、修复和创意处理。Canva 则提供了丰富的模板和设计元素,方便您快速制作吸引人的电商图片。但具体选择哪种工具,还需根据您的具体需求和使用习惯来决定。
2025-02-02
亚马逊大语言模型全景培训
以下是关于亚马逊大语言模型全景培训的相关内容: Andrej Karpathy 亲授的大语言模型入门讲座提到: 1. 大型语言模型(LLMs):神经网络实际上是下一个词预测网络,通过给它一些单词来预测下一个单词。尽管下一个单词预测任务看似简单,但它迫使神经网络学习大量关于世界的信息,并将其编码在参数中。例如,预测关于露丝·汉德勒的内容时,模型参数需学习相关知识。模型推理是生成接下来的单词,通过采样选择单词并反馈回模型获取下一个单词,从而“梦想”出类似互联网文档的内容,如 Java 代码、亚马逊产品、维基百科文章等。 2. 获取辅助模型的方式:保持优化相同,更换训练数据集。过去对互联网文档训练,现在替换为手动收集的数据集,通过雇用人员按标签说明提问并写下答案。预训练阶段文本量大但质量低,第二阶段更看重质量而非数量,文档少但都是高质量对话。 该讲座的作者是天空之城城主,来源为 https://mp.weixin.qq.com/s/fmb4nvIEA9AC5JpNPWN7Q ,宝玉的另一翻译版本为 https://twitter.com/dotey/status/1728959646138880026 。讲座分为三大部分,包括第一部分的大型语言模型(LLMs)、第二部分的 LLM 的未来、第三部分的 LLM 安全性。Andrej Karpathy 近期进行了一场 30 分钟的入门讲座,虽未录制,但因受欢迎决定重新录制并上传至 YouTube 平台。
2024-12-13
不翻墙就可以使用的写亚马逊产品文案的AI工具有哪些
以下是一些不翻墙就可以使用的用于写亚马逊产品文案的 AI 工具: 1. Jasper.ai:这是一个商业文案写作平台。使用过程为:先选择文案的使用场景,Jasper.ai 会加载对应的模板,然后跟着模板步骤填写文案信息,最后生成完整文案并进行局部调整。 2. 目前市面上还没有专门针对亚马逊产品文案的特定 AI 工具,但一些通用的 AI 写作工具可能会有所帮助,比如利用 AI 进行市场分析、关键词优化、内容生成等方面来辅助撰写亚马逊产品文案。例如,利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,获取关键信息;通过 AI 推荐高流量、高转化的关键词来优化产品标题和描述;使用 AI 文案工具撰写有说服力的产品描述和营销文案等。
2024-08-09
如何用AI写亚马逊文案
以下是使用 AI 写亚马逊文案的一些方法: 1. 使用 Jasper.ai 平台: 先选择文案的使用场景,Jasper.ai 会加载一个对应的模板。 跟着模板的步骤,一步一步填写文案信息。 生成完整文案后,进行局部调整。 2. 借助文本类 AI 工具如 ChatGPT 协助完成文案的构思和创作。 3. 利用 ParagraphAI 这个 AI 写作助手,它能提升写作能力,提供语法、拼写和词汇检查以及查重功能,还能为电子邮件、消息、评论等生成自动回复,以个性化的风格和语气生成段落、电子邮件、文章、广告文案、产品描述等,并且受到亚马逊等知名公司的信任。
2024-08-09
有哪些完全免费,用于亚马逊运营的ai
亚马逊运营涉及多个方面,包括产品列表优化、库存管理、广告投放、客户服务等。目前市场上有一些AI工具可以辅助这些工作,但“完全免费”的工具可能功能有限或仅提供试用期。以下是一些可能提供部分免费功能的AI工具,用于亚马逊运营: 1. Helium 10:虽然不是完全免费,但Helium 10提供了一些免费工具,如产品研究工具、关键词研究工具等。 2. Jungle Scout:同样,Jungle Scout也提供了一些免费功能,用于产品研究和市场分析。 3. AMZScout:AMZScout提供了一些免费工具,例如关键词追踪器和竞争对手分析工具。 4. Sellics:Sellics是一个亚马逊卖家工具集,提供了一些免费试用功能,如广告管理、库存管理等。 5. FeedbackWhiz:用于自动化亚马逊反馈管理,可能提供有限的免费功能。 6. RepricerExpress:这是一个自动定价工具,可以帮助卖家根据市场条件调整价格,可能提供试用期。 7. Bqool:提供亚马逊反馈管理和价格监控工具,可能包括一些免费服务。 8. SellerApp:提供产品研究、关键词优化等功能,可能有一些免费工具或试用期。 9. Viral Launch:提供产品研究和列表优化工具,可能提供有限的免费服务。 10. Algopix:由Helium 10提供,是一个产品研究工具,可能有一些免费功能。 请注意,这些工具的免费功能可能包括基本的产品研究、关键词分析等,而更高级的功能如广告优化、库存管理等可能需要付费。此外,完全免费的AI工具可能在功能、数据准确性和更新频率上有所限制。因此,对于亚马逊卖家来说,选择适合自己业务需求的工具并合理利用其免费和付费功能是非常重要的。
2024-07-24
AI生成商家logo图的工具
以下是一些可以生成商家 logo 图的 AI 工具: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择不同设计元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户能通过拖放方式设计 Logo,并利用 AI 建议的设计元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,用户可利用 AI 辅助的设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,能根据用户输入的品牌名称和行业类别快速生成设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助用户创建个性化 Logo。 另外,您还可以访问网站的 AI 生成 Logo 工具版块,获取更多好用的工具。使用这些工具时,即使没有设计背景的用户也能轻松创建专业的 Logo 设计,通常可根据品牌理念和视觉偏好,通过简单交互获得一系列设计方案,并进一步定制和优化直至满意。 即梦 AI 也有相关功能,具体制作步骤如下: 1. 在即梦左侧点击「智能画布」「上传图片」—上传一张 logo 图点击「图生图」—输入描述词参考程度为 55 ——选择「轮廓边缘」点击立即生成。 2. 右侧图层可看到 4 张图,选择喜欢的图即可;如果不喜欢,可用局部重绘、消除笔等功能调整,也可以重新生成。 期待大家的创意哦~有问题可发送到即梦@bytedance.com
2024-08-15
如果调教ai助力成为网文作家?选用市面上哪种ai模型好一些
如果想调教 AI 助力成为网文作家,以下是一些建议和可选用的 AI 模型: 借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。 分三次询问:第一次从写作角度分析;第二次从读者角度分析;第三次指出文章的缺点、不足及改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述”的提示词。 分享一个根据文章内容对作者心理侧写的提示词:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 在模型选择方面: 目前只推荐 Claude 3.7 Sonnet,Anthropic 对 Claude 在编程和美学方面有深度优化,效果较好。但您也可以使用 DeepSeek 等模型进行尝试。 对于模型的选用,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。一般可选择豆包·function call 32k,“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-25
怎么用大模型赚钱
以下是关于如何用大模型赚钱的一些分析和建议: 1. 面向各国政府做基础大模型本土化预训练:很多 Global 的量化基金在中国会水土不服,大模型也存在类似情况。OpenAI、Google、Meta 的模型在中文能力和对中国国情的优化上存在不足,不符合政策要求。这给了国内大模型公司做本土化预训练的机会,只要做到国内领先,即使和世界领先的模型有代际差,也能有市场。 2. 关注行业应用:大模型在企业中的落地应用是关键。目前大模型是典型的赢家通吃领域,巨头在资金、技术和数据方面有优势。但大模型企业需要将技术与更多场景结合,打造落地应用。例如,Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI 自主做出。 3. 竞争格局与成绩:国内大模型行业已形成以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。2024 年是国内大模型落地元年,中标项目数量和金额大幅增长。如百度在中标数量和金额上排名领先,在金融等细分行业也表现出色。 需要注意的是,大模型领域竞争激烈,只有极少数公司能成功,且需要将大模型商业化,否则企业可能在赛道比拼中失败。同时,大模型的发展与国家政策密切相关,需要受到有效监管才能健康发展。
2025-03-25
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
大神解读大模型底层
大模型的底层原理主要包括以下几个方面: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从给定的提示词“how”开始,通过计算推理依次输出“are”“you”等,直到计算出下一个词是“”时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。以 GPT3 为例,训练它使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。预训练需要花费大量时间和算力资源,且在没有外部帮助的情况下,大模型所知道的知识信息是不完备和滞后的。 3. 转换器模型(Transformer):Transformer 是一种处理文本内容的经典模型架构,虽然其具体细节不清楚不影响使用大模型,但感兴趣的可以通过相关链接进一步了解。 4. 参数规模:依靠概率计算逐字接龙的方法看似难以生成高质量回答,但随着参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,“涌现”出惊人的“智能”。这种“涌现”现象在人类的进化和个体学习成长历程中也存在。
2025-03-24
模型理解汉字能力很差
目前模型在理解汉字方面存在一些问题,主要表现为: 1. 语义理解较差,例如在某些应用场景中对中文的理解不够准确。 2. 中文汉字的集合较大,纹理结构更复杂,增加了理解难度。 3. 缺少中文文字的图文对数据,影响了模型对汉字的学习和理解。 为了提升模型对中文文字的生成能力,采取了以下措施: 1. 选择 50000 个最常用的汉字,机造生成千万级的中文文字图文对数据集,但机造数据真实性不足。 2. 实用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,约百万量级。通过结合高质量真实数据,提升了中文文字生成能力的真实性,即使是真实数据中不存在的汉字的真实性也有所提高。
2025-03-24