Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

给到你一些资料,创建一个对于资料内容掌握 的AI智能体具体操作

Answer

以下是创建对于资料内容掌握的 AI 智能体的具体操作:

一、了解智能体的概念

智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。其核心在于有效控制和利用大型模型,提示词的设计对智能体的表现和输出结果有直接影响。

二、实践制作智能体

  1. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发。

    • 点击“浏览 GPTs”按钮。
    • 点击“Create”按钮创建自己的智能体。
    • 使用自然语言对话或手工设置进行具体设置。
    • 开始调试智能体并发布。
  2. 以字节的扣子为例,其作为字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能迅速构建各类问答 Bot,开发完成后可发布到社交平台和通讯软件上。创建智能体可通过简单 3 步:起一个名称,写一段简单介绍,使用 AI 创建一个头像。

  3. 对于 GPTs,可预先写好提示词,像编程一样详细设定操作步骤,方便重复使用。还可将日常工作中部分固定输入输出的场景写成“智能体”并不断迭代优化。很多 AI 网站都能创建“智能体”,如 Kimi.ai ,可设置配置信息、知识库、能力配置等,手搓各种机器人为您工作。

Content generated by AI large model, please carefully verify (powered by aily)

References

提示词培训课——Part2

现在,我们将进入智能体的学习环节。在开始之前,我们首先需要了解智能体是什么。我们现在接触到的智能体大多是建立在大模型之上的。这些智能体的发展历程是从一个基于符号推理的专家系统逐步演进而来的。随着时间的推移,技术的进步使得我们能够开发出更加复杂和高级的智能体。这些基于大模型的智能体具有以下特点:1.强大的学习能力:它们能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。2.灵活性:这些智能体可以适应不同的任务和环境,表现出较高的灵活性和适应性。3.泛化能力:它们能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。智能体的核心在于如何有效地控制和利用这些大型模型,以达到我们设定的目标。这通常涉及到精确的提示词设计,以引导模型朝着期望的方向发展。提示词的设计直接影响到智能体的表现和输出结果。接下来,我们可以展示一张图来更直观地说明这一点。在这张图的中心是提示词,它代表了智能体与用户或其他智能体交互的设定和逻辑。[heading1]十三、LangGPT结构化提示词[heading1]十四、动手实践——Chat GPT版本[content]在介绍了智能体的基本概念之后,我们将继续深入探讨,并动手实践制作智能体。我鼓励大家基于一些公开的大模型应用产品(如Chat GLM、Chat GPT、Kimi等),尝试开发属于自己的智能体。记住,智能体的开发是一个不断学习和进步的过程。不要害怕犯错,每一次尝试都是向成功迈进的一步。通过实践,您将能够更好地理解智能体的潜力,并发掘其在各种应用场景中的可能性。Step.1点击“浏览GPTs”按钮Step.2点击“Create”按钮创建自己的智能体Step.3使用自然语言对话进行具体设置Step.3使用手工设置Step.4开始调试你的智能体并发布

我用扣子做一个简单的智能体——竖起耳朵听

原文链接:https://developer.volcengine.com/articles/7386988670428905510作者:法医[heading2]爆火的AI Agent[content]AI Agent也就是我们所说的AI智能体,那什么是AI智能体呢?简单来说就是拥有各项能力的打工人来帮我们做特定的事情。目前有不少大厂推出自己的AI智能体平台,像字节的扣子,阿里的魔搭社区等等,体验过GPT或者文心一言大模型的小伙伴应该都知道,现在基本可以用自然语言来编程了,相当于降低了编程的门槛,另外之前在使用GPT或者文心一言大模型的时候会出现胡编乱造的情况以及时效性、无法满足个性化需求等问题,如果这些不解决的话,AI很难被真正广泛应用,而AI智能体的出现正是解决这些问题的绝佳方式,AI智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以AI智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的AI智能体来解决自己的事情。[heading2]扣子Coze[content]📢扣子官网:[https://www.coze.cn/](https://www.coze.cn/)扣子(Coze),作为字节跳动旗下的新一代一站式AI Bot开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于AI模型的各类问答Bot。这些Bot的功能涵盖了从解决简单问答到处理复杂逻辑对话的广泛范围。当我们开发完成后,还可以将自己构建的Bot发布到各种社交平台和通讯软件上,让更广泛的用户群体能够与这些Bot进行交互聊天。[heading2]竖起耳朵听的创建[content]我们可以通过简单3步创建智能体,首先我们要起一个智能体的名称,然后写一段智能体的简单介绍,最后使用AI创建一个头像即可。

张翼然:AI引领未来课堂的探索与实践.pdf

第三种智能[heading2]人类智能人工智能人类智能+人工智能Co-Intelligence[heading3]1.⽤ AI搜索引擎如felo.ai/search搜索并归纳内容[heading3]2.贴内容,⽤ AI可视化⼯具napkin.ai转成图示[heading4]如何效率更高的使用GPT?[content]所谓GPTs,就是你预先把咒语(prompts)写好,可以像编程一样,把要求AI操作的步骤写得非常详细,以后每次拿过来直接就用,而不必重新再写。——万维钢:三个用法,AI颠覆了我的工作流建议找个空闲日,将自己的日常工作列出来,寻找哪些工作,部分可以被AI加速。哪些工作基本上是固定输入输出的。可以尝试把这些工作场景写成“智能体”,并尝试不断迭代优化更深入的,可以规划一门课程,一次讲座,一次培训,哪些环节可以用AI完成如下图,不同老师有不同的尝试很多AI ⽹站都可以创建“智能体”如上图,给配置信息(提示词)、知识库、能⼒配置等你可以⼿搓各种机器⼈🤖,让它们为你⼯作:出试题、找资料、画插图、专业翻译...凡是你需要多次使⽤的提示词配置一个,就能反复快速使⽤,还能逐步调整优化设置“常⽤语”、“⼩助⼿”、“bot”Kimi.ai[heading4]⽣成术语解释[content]请你扮演维基百科,为我解释下⾯的概念或定义。请以这个格式输出相应的内容:##定义##来源、出处、历史##通俗易懂的解释##⽤法举例本⼈(⾼校教师)创建/改编的AI助理

Others are asking
多模态的AI工具有哪些
以下是一些多模态的 AI 工具: GPT4VAct:这是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。它可以识别网页上的元素并理解其功能,目的是自动完成一些人工操作任务以提高效率。主要特点包括有限的视觉处理能力、自动标记、鼠标和键盘操作等,但目前存在一些功能暂不支持。 Sora:是第一个能够根据人类指令生成长达一分钟视频的模型,标志着在生成式 AI 研究和开发中的重大突破。 DiT:能将视频分解为一帧帧图像并逐帧去噪生成流畅连贯的视频,不仅能生成高质量逐帧图像,还能在时间维度上保持一致性。 Topview.ai:是一款面向海外市场的多模态转换工具,作为 AI 驱动的营销视频生成工具,可自动实现模态转换,帮助社交媒体达人将素材一键转换为爆款商业短视频。
2025-02-18
想做ai产品经理如何从0到1学习ai
如果您想从 0 到 1 成为 AI 产品经理,可以按照以下步骤学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下案例: 90 分钟从 0 开始打造您的第一个 Coze 应用,了解 Code AI 应用开发教学,包括其背景、现状、证件照应用案例以及学习过程,重点熟悉桌面网页版的用户界面。 参考北京分队成员的经验,如枫 share、行远、管子、猫先生、Andy 等在 AI 领域的技能、经验、职业、兴趣爱好等方面的情况。
2025-02-18
我是一个ai小白,我想要在一个月内快速入行ai,需要怎么做
以下是对于您在一个月内快速入行 AI 的建议: 首先,要明白对于超出自己理解范围的事情,最简单有效的方法就是亲自尝试。学习新事物,百闻不如一练。AI 是未来必然的发展方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最佳方式。 对于普通人来说,对 AI 最好的直观初接触主要有两个方面: 1. 思考最低成本能直接上手试的工具是什么,自己能否亲自尝试。 2. 了解现在最普遍或最好的工具是什么,以及它们能达到的效果。 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了更便捷地展示 AI 的能力,让普通人能更直观地马上上手,您可以重点关注以下几种工具: 1. 聊天工具 2. 绘画工具 3. 视频工具 4. 音乐工具 如果您想要跟他人交流、一起在 AI 路上探寻,可以戳这里:
2025-02-18
哪个AI助手最好用?
目前没有直接关于“哪个 AI 助手最好用”的准确答案。但为您提供以下相关信息供参考: 在编程方面,有一些辅助编程的 AI 工具,如 GitHub Copilot,由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议;通义灵码,阿里巴巴团队推出,提供多种编程辅助能力;CodeWhisperer,亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议;CodeGeeX,智谱 AI 推出的开源免费 AI 编程助手;Cody,代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库;CodeFuse,蚂蚁集团支付宝团队推出的免费 AI 代码助手;Codeium,一个由 AI 驱动的编程助手工具,可提高编程效率和准确性。您可以根据自己的需求选择适合的工具。更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。 在其他领域,如视频问答方面,YouTube 推出了高级会员可使用的视频问答功能,通过视频下方的“Ask”按钮使用 AI 助手,支持询问关于视频的各种问题。 在照片处理方面,Cooraft 是个性化 AI 照片效果工具,能将自拍转换为 AI 风格视频、生成专业级高质量照片、添加艺术效果、制作趣味表情包、让静态照片动起来、将草图变真图等。 在购物方面,Perplexity 推出了 AI 购物助手:Shop Like a Pro,从产品搜索到下单全流程一站式完成,无需切换标签页,还具有 Buy with Pro 功能,支持直接研究商品并结账,提供免费送货服务,支持视觉搜索工具,通过拍照找到相关商品。
2025-02-18
我是一个ai小白,我要怎么入行ai
对于 AI 小白入行 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考《雪梅 May 的 AI 学习日记》: 1. 学习模式:输入→模仿→自发创造。 2. 第一阶段:迈出第一步,看书听课进社区。例如: DAY5 2024.5.26:使用 kimi,参考,抱着每天向 kimi 问 100 个问题的心态,调整思考模式,养成有问题问 AI 的习惯。 DAY6 2024.5.31:应朋友强烈推荐,插队先看吴恩达的课程,在 B 站搜索对应关键词,有很多课程资源,如吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》,抽空陆续 3 天学完。 DAY7 2024.6.1:探索用 AI 解决一个真实问题,例如团队要写一份行业研究报告,试试看 AI 怎样能帮到自己。 需要注意的是,学习资源可能会更新变化,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。本日记中学习资源的内容都是免费开源的。
2025-02-18
如何用ai搭建一个学习平台,完成学习计划
以下是用 AI 搭建学习平台并完成学习计划的一些方法和建议: 英语学习: 1. 智能辅助工具:利用如 Grammarly 这样的 AI 写作助手进行英语写作和语法纠错,以改进英语表达和写作能力。 2. 语音识别和发音练习:使用如 Call Annie 这样的语音识别应用进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用如 Duolingo 这样的自适应学习平台,其利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 4. 智能导师和对话机器人:利用如 ChatGPT 这样的智能对话机器人进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用如 Khan Academy 这样的自适应学习系统,结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用如 Photomath 这样的智能题库和作业辅助工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的虚拟教学助手,利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 外语学习: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并取得更好的学习效果。
2025-02-18
deepseek相关的资料
以下是关于 DeepSeek 的相关资料: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink DeepSeek 从入门到精通.pdf:https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink DeepSeek 13 大官方提示词通俗解读,让新手也能用出高手的效果:https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日:https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink Deepseek"4+1"黄金提问法——情境化:https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink Deepseek"4+1"黄金提问法——迭代优化:https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink 如果您的 DeepSeek 一直显示服务器繁忙,可尝试以下替代搜索: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要: DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学和与大模型互动的分享: 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 的介绍与活动预告: Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-02-14
需要一些ai入门科普资料
以下是为您提供的 AI 入门科普资料: 一、技术原理相关 1. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 2. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助 Python 解释器等工具作为计算工具。 3. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动得到的结果,可借助 LangChain 等框架简化构建流程。 二、关于未来的想象 1. Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。 2. 在端到端算法的时代,不应继续使用冯诺依曼架构。 3. 在存算一体(在存储单元里做计算)的芯片之上,一定会诞生全新的算法。 个人总结:很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门。 此外,安克创新的 CEO 阳萌的一些观点也很有启发,比如之前对安克创新的印象是卖充电宝和安防设备,但看了访谈后会被其认知震撼。
2025-02-12
deepseek 小说的资料在哪一页
以下是关于 DeepSeek 小说的相关资料所在位置: 此外,还有以下智能纪要中的相关内容: ,包括旧模型文学创作弊端与 Deepseek 使用建议等章节。 ,围绕如何用 deepseek 写小说展开。 ,介绍 Deepseek R1 大模型的特点与创作表现。 ,讲解 Deepseek re 提示词写法及相关理论探讨。 ,围绕 Deepseek REE 提示词展开讨论。 ,探讨 AI 辅助下的小说创作及对好文字、文学创作方式。
2025-02-11
deepseek资料
以下是关于 DeepSeek 的相关资料: 2025 年 2 月 6 日的智能纪要中,DP 模型能进行自然语言理解与分析、编程、绘图(如 SVG、MA Max 图表、react 图表等),使用优势是可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转自 Archerman Capital 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 集合·DeepSeek 提示词方法论中,提供了一些相关文章和链接,如南瓜博士的相关文章,以及 DeepSeek 官方提示词和最新文章观点学术报告及业界评论的链接。同时还有 R1 模型的一些使用建议。 DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。
2025-02-08
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 2025 年 2 月 6 日的智能纪要中,分享了 DP 模型的使用,其功能包括自然语言理解与分析、编程、绘图等。使用优势是能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本的问题。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取,介绍了 DeepSeek 的模型、收录内容、提示词使用技巧和好玩的案例等,未来活动预告有明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 非技术人角度的研究总结,主要围绕天才养成记、“填鸭”之困、自学成才、纯强化学习等话题,力求帮助非技术读者深度理解 Deepseek R1,更好开展工作与生活。
2025-02-07
帮我收集deepseek的使用资料
以下是关于 DeepSeek 的使用资料: 相关文章: 南瓜博士的《当你惊呼 DeepSeek 成精时,请警惕前方的陷阱》,链接:https://mp.weixin.qq.com/s/ppt89GozeYo7hR99pEFrkA 南瓜博士的《让 DeepSeek 成为全家人的脑洞外挂》,链接:https://mp.weixin.qq.com/s/BBh8GTrdhb8Qyqgz8SufwQ 奥的《让 DeepSeek 进行脱口秀创作,幽默程度虽然大幅提升,但仍有进步空间》,链接:https://mp.weixin.qq.com/s/3nZERD5H5wPCGCT1_A46Sw DeepSeek 最新文章观点学术报告及业界评论:https://waytoagi.feishu.cn/wiki/D9McwUWtQiFh9sksz4ccmn4Dneg 社区动态: 华尔街分析师对 DeepSeek 的反应:DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为 DeepSeek 或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek DeepSeek 的实际使用体验:中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 工具使用: 网址:https://www.deepseek.com/zh ,新手推荐,国内能访问,网页登录方便,目前完全免费。使用时点击开始对话,左边选择代码助手。 在生成 2048 游戏上,DeepSeek 和晓颖 AI 助手更为简便准确。
2025-02-05
搭建个人知识库的具体操作是什么?
搭建个人知识库的具体操作如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载不同类型的文档。 文本分割器把文档切分为指定大小的块。 存储涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 通过检索算法找到与输入问题相似的嵌入片。 把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 2. 本地知识库进阶: 若要更灵活掌控知识库,需使用 AnythingLLM 软件,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 操作包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 3. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成小文本块,通过 embeddings API 转换成向量,在向量储存库保存向量和文本块作为知识库。 用户提问时,问题先转成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 例如,对于“此文作者是谁?”的问题,通过比较向量可找到关联度高的文本块。
2025-02-13
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17