Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

小白怎么学习Ai掌握ai的使用

Answer

对于小白学习 AI 并掌握其使用,以下是一些建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
  6. 开发实践:
    • 从一个最最基础的小任务开始,让 AI 先帮你按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。
    • 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助梳理出产品需求文档。
    • 注意在开发过程中可能会遇到的问题,如问题描述不清楚导致得到错误指引、AI 给的方案太复杂、配置错误等,最好有人类导师把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

推荐你从一个最最基础的小任务开始让AI先帮你按照best practice写一个say hello的示例程序,并解释每个文件的作用及程序运行的逻辑。这样,你可以通过最基础的绝对不会出错的小任务,来学会必备的调试技能。“我在学习写chrome插件。请选择最适合小白上手的技术栈,按照best practice为我生成一个简单的示范项目,但要包含尽可能全面的典型文件和功能。请为我讲解每个文件的作用和程序运行的逻辑。”此处要求AI按照best practice来写非常重要:文件一开始就有良好的组织,后续功能复杂了才不会乱套。还有一个偷懒小妙招:如果你用的是o1-mini,你可以在prompt最后添加这句:“请生成create.sh脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果windows机器则是create.cmd)足够勤勉的的o1-mini会为你生成一段超级长的代码,并给出提示,你只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。[heading2][heading1]2明确项目需求[content]你可以通过和AI的对话,来逐步明确项目需求。(如果你是训练有素的产品经理,可以忽略这一步)“我想要开发一个XXX。你能否像一个高级别的还懂技术的产品经理指导初级产品经理那样,向我提问,帮我梳理清产品功能,尤其要注意可能会涉及到技术方案选择的关键点。请一问一答,帮我由全局到细节逐步梳理。不要一口气问我太多问题。”来来回回的对话后,你可以让AI帮助你梳理出产品需求文档。这样的文档会包含影响技术方案选择的细节,比直接给AI一段口头的需求描述要准确地多。在后续开发的时候每次新起一个聊天就把文档发给AI并告知你现在在做第几点功能,会非常方便。[heading2]

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

我之所以琢磨出上面的路径,是因为我的之前只玩过图形化编程的女儿,在暑假超脑AI黑客松期间,靠Claude和我的帮助,用Unity开发了一个RPG小游戏(C#,用到了coze的API)。起初我并不相信纯小白能通过AI搞定Unity程序,我甚至建议她找助教要一个更符合需求的脚手架、只要复制粘贴改一小段代码就能用的那种。但女儿不服气——什么都是助教搞定那也太没意思了——她决定做一个最简单的任务:让Claude教她做一个2D平面上用上下左右键控制走动的小人,碰到墙壁要能停下来。半小时,完成了这个任务,也明白了Unity里的基本概念。这是一个非常好的起点。后来的开发有些很顺利,但也时常有挫折。几乎每天她都奋战到凌晨再沮丧地睡去,第二天一早向我求助,我一看——啊,你又被AI带坑里了。被AI带坑里的原因很多——她问题描述不清楚,且不知道这种描述在程序员的世界里会被理解成另一种问题,于是,得到了错误的指引;AI给的方案太复杂,需要有很多前置知识才能搞明白;其实AI给的代码是对的,但别的配置错误,AI没想到要检查丫头也不知道,乱改了很久;……这些挫折,让我意识到小白需要通过AI能直接搞定的小项目,来先学明白背后的原理,在此基础上才能开发复杂项目。小小的任务,AI可以胜任、非常耐心地指导。因此最好是要有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。学生-导师-AI助教三者协作的关系图如下:

Others are asking
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
ai在营销方面的应用
以下是 AI 在营销方面的应用: 1. 营销 AI 产品: Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。 2. 生成式人工智能在营销中的改变: DALLE 2 和其他图像生成工具已用于广告,如亨氏使用番茄酱瓶的图像论证“这就是人工智能眼中‘番茄酱’的样子”,雀巢使用维米尔画作的人工智能增强版销售酸奶品牌,Stitch Fix 服装公司使用 DALLE 2 根据客户偏好创建服装可视化,美泰使用该技术生成用于玩具设计和营销的图像。 3. 2025 年数字营销趋势中的 AI 驱动营销: AI 将继续成为未来数字营销的基石,但使用需要具备战略性和明确目的,以确保品牌真实性,应追求提升用户体验。 预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元。采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
AI教育都有哪些应用
AI 教育的应用主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生的行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解学生写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作,并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程。 此外,AI 在教育领域的应用还体现在为每个学生提供定制化学习体验、帮助教师生活更轻松和课程更有效、用于自学学习等方面。但使用时需注意对关键数据根据其他来源仔细检查,以防人工智能产生幻觉。
2025-01-24
通义灵码AI程序员
通义灵码是基于通义大模型的 AI 研发辅助工具,具有以下特点和能力: 提供代码智能生成、研发智能问答、多文件代码修改、自主执行等能力,为开发者带来智能化研发体验,引领 AI 原生研发新范式。 具备多文件代码修改和工具使用的能力,可与开发者协同完成编码任务,如需求实现、问题解决、单元测试用例生成、批量代码修改等。 核心能力包括:从片段级到多文件级的 AI 编码,能完成涉及工程内多文件级的编码任务;新增多种上下文感知、意图理解、反思迭代、工具使用等能力,可与开发者协同完成更复杂的编码任务;自动完成工程内多个文件的代码修改的 Diff 生成,并提供多文件的变更审查视图,高效完成 AI 生成代码的确认;构建人机协同工作流,通过多轮对话逐步完成编码任务,产生多个快照版本,可任意切换、回退。 “AI 实训营”第二期:大咖带你快速上手通义灵码 AI 程序员 讲师:梦飞,WaytoAGI Agent 核心创作者,词元映射 CEO。 课表: 01/22 20:00(直播回放:https://b23.tv/iQcVksx ) 0 基础入门篇:写代码像聊天一样简单 可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space AI 编程的能力与边界 通义灵码上手指南 一句话 AI 编程小游戏展示 01/23 20:00(直播回放:https://waytoagi.feishu.cn/minutes/obcnazg6vi2c7y25xn3898tw?from=ai_minutes ) AI 编程实战篇:人人都能“福从天降” 0 基础带练“福从天降”小游戏 自然语言生成更多小游戏 如何在 Github 部署并生成在线链接 本期共学直播地址: 会议时间:20:00 21:30 会议 ID:932 264 694 会议链接:vc.feishu.cn/j/932264694 加入通义灵码钉钉共学群(钉钉群号:78080029971),大咖在线答疑!春节专题,现场发红包!2 天课程,带你从小白到进阶,从学习到实践,全面了解 AI 应用开发!和百万开发者一起共学、共享、共实践!
2025-01-24
绘图ai工具有哪些
以下是一些常见的绘图 AI 工具: 1. Lucidchart:这是一个流行的在线绘图工具,支持多种图表的创建,包括逻辑视图、功能视图和部署视图等。具有拖放界面,易于使用,支持团队协作和实时编辑,还有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富的模板用于创建逻辑视图、功能视图和部署视图等。集成 Office 365,方便与其他 Office 应用程序协同工作。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持本地和云存储(如 Google Drive、Dropbox),多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/ 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,还有一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,帮助用户创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 对于绘制示意图,以下工具也值得推荐: 1. Lucidchart:集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 2. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图,其 AI 功能可以帮助自动化布局和优化图表设计。 3. draw.io(现在称为 diagrams.net):免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。
2025-01-24
如何优化自己的prompt,提升AI结果输出的稳定性
以下是优化自己的 prompt 以提升 AI 结果输出稳定性的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。 2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩,以生成期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的描述方式。 5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,如果提示词效果不符合预期,可以和 AI 再进行几轮对话来调整输出结果。最终通过询问 AI“怎么样修改现有的 Prompt,可以让你稳定输出当前的预期”来进行 prompt 的迭代。得到 prompt 后,可以新开一个 AI 对话,把 prompt 输入到对话中,开始验证其可用性和稳定性。例如输入 MECE 法则进行测试。
2025-01-24
我是一个AI小白,想系统学习AI,实现的目标是成为AI领域小能手,如果能用于变现则更好,我需要从什么开始学习,周期大概是多少?适合做哪些变现的项目呢
对于您这样的 AI 小白,想要系统学习 AI 并实现成为领域小能手甚至变现的目标,以下是一些建议: 1. 学习模式:可以采用输入→模仿→自发创造的模式。先广泛输入知识,然后进行模仿,最后尝试自发创造。 2. 学习内容:去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。但要注意,一些旧的学习材料可能已经不适用。 3. 时间安排:学习时间不必每天依次进行,可以在有空的时候学习。 4. 学习状态:保持良好的学习状态,有意愿和动力去学。 5. 费用方面:学习资源大多是免费开源的。 新手学习 AI 可以这样做: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 学习周期因人而异,取决于您的学习时间投入、学习效率和理解能力等因素。 关于变现项目,比如可以尝试用 GPT 和 SD 制作图文故事绘本、小说推文等,但要注意项目可能存在的不确定性。
2025-01-23
小白学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式是输入→模仿→自发创造。学习内容可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。该日记中的学习资源都是免费开源的。 在理解技术原理与建立框架方面,可通过以下通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,无监督学习是学习的数据没有标签,强化学习是从反馈里学习,最大化奖励或最小化损失。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型。
2025-01-23
新手小白,如何从0开始搭建AI Agent
对于新手小白从 0 开始搭建 AI Agent,以下是一些建议: 1. 规划阶段: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施阶段: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善阶段: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 此外,还需要了解一些关于 AI Agent 的基本概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括 Chain(通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量,大部分的 Chain 是大语言模型完成的 LLM Chain)、Router(可以使用一些判定,甚至可以用 LLM 来判定,然后让 Agent 走向不同的 Chain)、Tool(Agent 上可以进行的一次工具调用,例如对互联网的一次搜索,对数据库的一次检索)。 常见的 AI Agent 有 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本,配套的图片,以及每日朋友圈)。这些 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系、反感度等,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-01-23
零基础 小白学习AI 编程
对于零基础小白学习 AI 编程,以下是一些建议和资源: 1. 可以尝试使用 Windsurf 进行开发。它具有卓越的上下文理解能力,能够自动识别项目的重要信息,如目录结构、文件依赖关系等,还能跨文件追踪上下文。同时具备强大的功能特性,如 AI 智能代理可自动完成重复性操作,Cascade 模式提供编辑和聊天两种模式。此外,它支持多语言和跨平台,适用范围广泛。您可以在 30 分钟内用它快速开发学习网站。 2. 参考《雪梅 May 的 AI 学习日记》,其中提到了 cursor 入门的相关内容,如“AI 编程共学 2 cursor 入门”和“AI 编程共学 3 AI 拍立得”。 3. 从最基础的小任务开始,比如让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 4. 明确项目需求,可以通过和 AI 的对话逐步梳理,让 AI 像高级产品经理一样向您提问,帮助您梳理出产品需求文档,方便后续开发。
2025-01-21
适合小白的AI知识库
以下是适合小白的 AI 知识库内容: 通识篇: 现有常见 AI 工具小白扫盲: 文章链接: 视频链接:(1 小时 32 分开始) 适用人群:对 AI 都没太多概念的纯纯小白 简要说明:给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量 AI 常见名词、缩写解释: 文章链接: 适用人群:对 AI 都没太多概念的纯纯小白 简要说明:给看不懂“黑话”和诸多缩写的小白,请善用这张表+多问 AI 对话工具(如豆包 or Kimi)结合食用 工具入门篇: (Prompt)现成好用的 Prompt: 文章链接: 适用人群:完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白 简要说明:想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀 prompt 案例,它们都有完整的结构。 (AI Agent)Agent 工具 小白的 Coze 之旅: 文章链接: 视频链接:Coze 之旅 1.0: 适用人群:完全没有编程基础,但对 AI 已有一点概念的小白 简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它 (AI Pic)现在主流的 AI 绘图工具网站: 文章链接: 适用人群:完全没接触过 AI 出图、只是听说过的小伙伴 简要说明:为纯粹的小白提供一个工具列表和扫盲 (AI Tools)数据工具 多维表格小白之旅: 文章链接: 视频链接: 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格 + AI 进行信息整理、提效、打标签,满足 80%数据处理需求 (AI Code)编程工具 Cursor 的小白试用反馈: 文章链接: 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 (AI Music)音乐工具 Suno 的小白探索笔记: 文章链接: 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作
2025-01-20
小白从哪开始学AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考以下经验: 像《雪梅 May 的 AI 学习日记》中提到的,如果您还在观望 AI,不知道从何入手,可以先看日记的目录。学习模式可以是输入→模仿→自发创造。 注意学习内容可能会因 AI 发展迅速而变化,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 学习时间不必每天依次进行,有空的时候学习即可。 保持良好的学习状态,不必有心理压力,能学多少算多少。 学习资源很多是免费开源的。 最开始可以从 prompt 入手,3.5 刚出来的时候,对 AI 生成原理的理解加上 prompt 写得好,问问题和解决问题的效率是巨大的。作为小白类型的 Chat 网页终端用户,可以临时捏一些 prompt 解决具体的问题。
2025-01-20
如何快速掌握AI提示词的技巧
以下是快速掌握 AI 提示词技巧的方法: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支及相互联系。同时浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据自身兴趣选择特定模块,比如一定要掌握提示词技巧,因其上手容易且有用。 4. 实践和尝试:理论学习后进行实践来巩固知识,尝试使用各种产品创作作品,并在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,不同的 AI 产品在提示词方面也有各自的特点和技巧: 海螺 AI:MiniMax 视频模型能识别图片和理解指令,还能实现顶级特效和细腻表情呈现。提示词优化功能可扩展视频美学呈现,专业创作者有 2000 字的提示词空间。 星流一站式 AI 设计工具:在 prompt 输入框中可输入提示词和使用图生图功能。写好提示词要做到内容准确,包含人物主体、风格、场景特点等;可调整负面提示词;利用“加权重”功能突出重点;使用辅助功能如翻译、删除所有提示词、会员加速等。
2025-01-24
如何掌握生成式AI
以下是关于掌握生成式 AI 的一些建议: 课程学习: 可以学习台湾大学李宏毅教授的生成式 AI 课程,该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。 通过学习本课程,能够掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 学习内容: 了解什么是生成式 AI,包括其定义、分类,以及与判别式 AI 的区别和应用领域。 学习生成式模型的基本结构、训练方法、评估指标,以及常见模型的优缺点。 掌握生成式对话的基本概念、应用场景、系统架构和关键技术,以及基于生成式模型的对话生成方法。 熟悉预训练语言模型的发展历程、关键技术、优缺点及其在生成式 AI 中的应用。 知晓生成式 AI 面临的挑战和解决方法,以及未来发展趋势和研究方向。 学习资源: 教材:《生成式 AI 导论 2024》,李宏毅。 参考书籍:《深度学习》,伊恩·古德费洛等。 在线课程:李宏毅的生成式 AI 课程。 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法: 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-12-18
小白怎么最快掌握Ai,了解学习Ai的使用方法
以下是小白最快掌握 AI 并了解学习其使用方法的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于想要了解 AI 生成图像和生成视频的朋友: 多看教程,多实践,通过学习教程和反复实践,快速掌握 AI 工具的使用方法。 积极参与社群交流,加入相关社群,向有经验的朋友请教,获取宝贵经验和建议。 保持好奇心和探索精神,不断学习和探索新技术,在这个领域中保持竞争力。 7. 体验具体的 AI 工具: 例如使用“豆包”,其优点包括不需要翻墙,可以捏好给别人用,可以扩展聊天 AI 的基础能力(搜索、作图、文档等)。可通过网址 https://www.coze.cn/home 或直接在 APP 中搜索“豆包”进行使用,注册可用手机号、抖音号或飞书号,大约需要 5 分钟。在使用过程中不断优化和深入学习。
2024-12-13
作为新手,如何掌握AI?要掌握到什么程度?
对于新手掌握 AI,您可以参考以下步骤和内容: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. 了解 AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 掌握数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 熟悉算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优:了解如何评估模型性能,包括交叉验证、精确度、召回率等;学习如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN);了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 掌握 Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数:定义和调用函数,理解函数如何接收参数和返回结果;了解作用域和命名空间,包括局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 模块和包:学习如何导入 Python 标准库中的模块或者第三方库,理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP):了解面向对象编程的基本概念,包括类的定义和实例化;学习如何为类定义属性和方法,以及如何通过对象来调用它们,了解类之间的继承关系以及如何实现多态。 异常处理:理解什么是异常,以及它们在 Python 中是如何工作的;学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作:学习如何打开文件、读取文件内容以及写入文件,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于要掌握到什么程度,这取决于您的具体需求和目标。如果您只是想初步了解和应用一些简单的 AI 技术,掌握基本概念和一些常用工具的使用就可以。如果您希望在 AI 领域深入发展,可能需要系统地学习数学、算法、编程等知识,并不断实践和研究。
2024-12-11
作为新手,如何才能掌握好AI?做到什么程度算是学会了AI?
对于新手来说,要掌握好 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望在掌握基础后继续精进,最好体系化地了解编程以及 AI,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于做到什么程度算是学会了 AI,这没有一个绝对的标准。但一般来说,当您能够熟练运用所学的 AI 知识和技能解决实际问题,能够理解和解释常见的 AI 应用和模型的工作原理,并且能够在特定领域进行创新和改进,就可以认为在一定程度上掌握了 AI。
2024-12-11
你好我想从产品经理转型为AI产品经理,都需要掌握和了解哪些知识
从产品经理转型为 AI 产品经理,您需要掌握和了解以下知识: 1. 算法知识: 理解产品核心技术,了解基本的机器学习算法原理,以便做出更合理的产品决策。 与技术团队有效沟通,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划未来。 提升产品竞争力,发现独特优势并提出创新特性。 提升数据分析能力,处理和分析相关数据。 2. 市场与层级: 入门级:通过开源网站或课程了解 AI 概念,使用并实践应用搭建。 研究级:包括技术研究和商业化研究路径,能根据需求选择解决方案或手搓出 AI 应用验证想法。 落地应用级:有成功落地应用案例并产生商业化价值。 3. 岗位技能要求: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略。 对数据驱动的决策有深入理解,能基于数据分析做决策。 具有创新思维,能基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域有强烈好奇心并付诸实践。 对 AIGC 领域有深入理解与实际工作经验,关注前沿技术。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 总之,对 AI 产品经理的要求是懂得技术框架,对技术边界有认知,关注场景、痛点和价值。
2024-12-03