AI 有可能改变未来,主要体现在以下几个方面:
Beyond the “Exact Sciences”In areas like the physical sciences we’re used to the idea of being able to develop broad theories that can do things like make quantitative predictions.But there are many areas—for example in the biological,human and social sciences—that have tended to operate in much less formal ways,and where things like long chains of successful theoretical inferences are largely unheard of.在物理科学等领域,我们已经习惯了能够发展广泛的理论来完成诸如定量预测之类的事情。但有许多领域——例如生物科学、人类科学和社会科学——往往以不太正式的方式运作,并且诸如成功理论推论的长链之类的事情基本上是闻所未闻的。So might AI change that?There seem to be some interesting possibilities,particularly around the new kinds of “measurements” that AI enables.“How similar are those artworks?” “How close are the morphologies of those organisms?” “How different are those myths?” These are questions that in the past one mostly had to address by writing an essay.But now AI potentially gives us a path to make such things more definite—and in some sense quantitative.那么人工智能可能会改变这一点吗?似乎存在一些有趣的可能性,特别是围绕人工智能实现的新型“测量”。“那些艺术品有多相似?” “这些生物体的形态有多接近?” “这些神话有什么不同?”这些问题在过去大多需要通过写一篇论文来解决。但现在人工智能有可能为我们提供一条让这些事情变得更加明确的途径——并且在某种意义上是定量的。
在AI时代,技术专业人士需要发展那些AI难以替代的技能。这包括团队建设、跨文化交流、创新解决方案的设计等。AI虽然可以输出代码,但它无法建立团队、跨越文化界限进行交流,或者激发团队的创造力。技术就业市场将始终为那些能够融合技术智慧和人际交往能力的人提供机会。同时,对于那些从事现在可能面临被AI取代风险的工作的技术工作者来说,他们需要重新思考自己的职业生涯规划。这可能意味着学习新技能,或者转向那些更需要人类特质的工作领域。[heading3]结语[content]总的来说,生成式人工智能正在重塑技术就业市场的未来。它既带来了挑战,也提供了新的机遇。对于技术专业人士来说,关键在于理解并适应这一变化,发展那些AI无法替代的技能,并在新的技术生态中找到自己的位置。随着AI技术的不断发展,我们将进入一个更加智能化、高效的未来,但同时也需要更加注重人类的创造力和创新能力。
过去的科技创新浪潮——网络、互联网和移动技术——在很大程度上都是通信革命。而AI则不同,它是一场生产力革命,与个人电脑更加类似,AI塑造了商业和工业的未来。随着越来越多的AI被开发出来,它们将开始通过AI网络协同工作。在过去的一年里,我们看到生成式AI能够做到的事情已经从简单的文本或代码生成扩展到了代理交互。正如个人电脑和智能手机的兴起推动了对传输数据的互联网带宽的需求一样,AI Agent的发展将推动对新型基础设施的需求,以支持更强大的计算和解决串扰问题。正如英伟达公司首席执行官黄仁勋所说,我们正在进入一个"每个像素都将被生成"的世界。在这个生成的未来,公司建设本身可能会成为AI Agent的工作;而有一天,整个公司可能都会像神经网络一样工作。我们现在在应用领域看到的是下一代公司将使用的不断迭代的工具的最初版本。我们或许可以预期这些公司的规模会更小,但下一代公司具有的便利也意味着它们的数量会大大增加。公司的组建将变得更快、更流畅,并采用新的所有权和管理结构。也许有一天,会出现由一名AI工程师运营的大型公司。不久的将来,大多数公司都不会是一个人的公司,但它们会有不同于今天的公司的需求和痛点。他们将需要能够解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品。这些公司运行的软件数量将不断扩张和变化,代码生成和软件代理业务将实现更多的定制化和快速周期迭代。要赢得未来企业的青睐,创始人需要回答一些关键问题。这些公司将生产什么样的产品?它们需要什么样的基础设施和应用程序?劳动力将如何变化?分销和价值获取模式将如何变化?人工代理与自主AI Agent相比在潜在市场的整体规模中将各占多大比例?