Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何尽可能多的了解AI的信息

Answer

以下是尽可能多了解 AI 信息的一些方法:

  1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点继续询问,能帮助您深度思考。
  2. 优质信息源:像没有技术背景的普通人,可以在「即刻」App 的“AI 探索站”等免费圈子获取前沿信息线索,很多 Twitter 上的开发者大牛也会在这里分享,必要时可去 Twitter 和相关官网溯源。
  3. 信息爆炸做减法的小 tips:
    • 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。
    • 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。
    • 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。
    • 只关注理清需求和逻辑,不死记硬背提示词。
    • 先关注提升认知/洞察,然后再谈技巧。
  4. 持续学习和跟进:AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。
  5. 一位投资人的信息源:
Content generated by AI large model, please carefully verify (powered by aily)

References

危柯宇:如何让 AI 走进我们的工作和生活

问ai【一个(xxx职业)需要具备哪些知识?】,ai就可给出知识框架,然后根据知识框架每一个小点去问,就能让ai工具帮你指数级深度思考啦~[heading2]2.通往AGI之路[content][通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)优质信息源在哪?问渠哪得清如许,唯有源头活水来。好的内容,主要源于好的信息源。那么,像我这样的没有技术背景的普通人,想要学习或了解AI,最好的信息源在哪里呢?1.要点:信息渠道、质量、密度三者皆优即可;2.先说结论:“不在西装革履的卖课海报里,免费的,不需要520”,就在「即刻」App的“[AI探索站](https://m.okjike.com/topics/63579abb6724cc583b9bba9a)”等免费圈子里。“AI探索站”里的前沿信息线索基本够用,很多Twitter上的开发者大牛也会在这里分享,需要溯源的时候,我才会去Twitter和相关官网。3.信息爆炸之做减法的小tips:如果担心信息洪流太大,学不过来,可以尝试这5个技巧3.1.只掌握最好的产品,少关注新产品测评(除非远超ChatGPT)3.2.只解决具体问题,不做泛泛了解。从问题中来,到问题中去3.3.只关注核心能力,不关注花式玩法,用AI扬其长避其短3.4.只关注理清需求和逻辑,不死记硬背提示词3.5.先关注提升认知/洞察,然后再谈技巧

问:新手如何学习 AI?

持续学习和跟进:AI是一个快速发展的领域,新的研究成果和技术不断涌现。关注AI领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入AI相关的社群和组织,参加研讨会、工作坊和会议,与其他AI爱好者和专业人士交流。

一位投资人的AI信息源

在工作中,我将大部分时间(大约30-50%),用于深化我的人工智能/机器学习知识。我经常收到关于我用来帮助自己的工具/资源的问题。为了方便大家,这里是我的列表。希望对你们有帮助:1️⃣简报--TLDR AI([www.tldr.tech/ai](http://www.tldr.tech/ai))--The Sequence([https://lnkd.in/gZASkGHv](https://lnkd.in/gZASkGHv))--Deep Learning Weekly([www.deeplearningweekly.com](http://www.deeplearningweekly.com/))--Ben’s Bites([https://www.bensbites.co/](https://www.bensbites.co/))--Last week in ai([https://lnkd.in/gPmXZESe](https://lnkd.in/gPmXZESe))--Your guide to AI([https://lnkd.in/geARfRHB](https://lnkd.in/geARfRHB))2️⃣播客--No Priors podcast hosted by[Sarah Guo](https://www.linkedin.com/mwlite/in/sarahxguo)and[Elad Gil](https://www.linkedin.com/mwlite/in/eladgil)--Robot Brains Podcast hosted by[Pieter Abbeel](https://www.linkedin.com/mwlite/in/pieterabbeel)--Lex Fridman Podcast hosted by[Lex Fridman](https://www.linkedin.com/mwlite/in/lexfridman)--The Gradient podcast hosted by[Daniel Bashir](https://www.linkedin.com/mwlite/in/daniel-bashir)--Generally Intelligent hosted by[Kanjun Qiu](https://www.linkedin.com/mwlite/in/kanjun)--Last Week in AI 3️⃣会议--[工业界]World AI Cannes Festival

Others are asking
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
如何尽可能多的了解AI
以下是尽可能多了解 AI 的方法: 1. 认识 AI :对于没有理工科背景的人,可以将 AI 当成一个黑箱,只需知道它是能理解和输出自然语言的东西,其生态位是似人而非人的存在。从人类文明传说和古老哲人的智慧中寻找与 AI 相处的原则,比如在让其实现愿望时,要通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识。 2. 了解基本概念 : 阅读「」部分,熟悉术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)的联系。 浏览入门文章,了解其历史、应用和发展趋势。 3. 开始学习之旅 : 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 4. 选择感兴趣模块深入学习 :AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 5. 实践和尝试 :理论学习后,通过实践巩固知识,使用各种产品创作作品,在知识库分享实践成果。 6. 体验 AI 产品 :与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。 7. 持续学习和跟进 :AI 发展迅速,关注新闻、博客、论坛和社交媒体,加入相关社群和组织,参加研讨会、工作坊和会议,与他人交流。
2025-02-09
如果我希望搜索尽可能全部的含有相关搜索词的论文并提取其特定信息呢
目前知识库中没有关于如何搜索尽可能全部的含有相关搜索词的论文并提取其特定信息的内容。但一般来说,您可以通过以下几种方式来尝试: 1. 利用专业的学术数据库,如 Web of Science、Scopus 等,设置精确的搜索词和筛选条件。 2. 尝试使用多个不同的学术搜索引擎,以扩大搜索范围。 3. 运用高级搜索技巧,例如布尔逻辑运算符(AND、OR、NOT)来优化搜索词组合。 4. 对于提取特定信息,可以先确定所需信息的类型和特征,然后借助相关的文献管理工具或数据挖掘软件来辅助处理。
2024-11-06
国内外的智能体平台都有哪些?尽可能罗列出来
国内外的智能体平台有: 国内:Dify.AI、字节扣子、腾讯元器。 需要注意的是,个人比较常用的国内智能体平台是字节扣子,相关文章主要对比了字节扣子和腾讯元器。智能体相当于个人的数字员工,可以不断提效,帮助实现制定的目标,这和现实中老板给员工下达任务有相似之处。
2024-08-31
AI相关的舆情分析或信息订阅产品
以下是一些与 AI 相关的舆情分析或信息订阅产品: 腾讯研究院开发的系列产品: AI 每日速递:高度凝练的日报产品,帮助读者在 35 分钟内快速掌握 AI 领域当日十大关键进展。 AI 每周 50 关键词:周报产品,基于 AI 速递内容构建,通过梳理一周热点关键词并制作可交互索引,为研究者提供便捷的“检索增强”工具。 科技九宫格:以 35 分钟视频形式解读科技热点与关键技术原理的短视频栏目,通过可视化呈现促进读者对前沿技术的理解与讨论。 此外,团队还开展了 AGI 专题分析、AGI 线上圆桌、AI&Society 高端研讨会与 AI&Society 百人百问等系列研究探讨。 个人订阅的 AI 信息源: 包括公众号、Telegram、微博、即刻等平台。 推荐的 Telegram 频道:黑洞资源笔记、科技新闻投稿、AI 探索指南、ChatGPT 新闻聚合、ChatGPT 精选、极客分享、开源社区、深度技术资源、AI News、AI Copilot、GIthub 仓库推荐等。 公众号“卡尔的 AI 沃茨”也会有一些 AIGC 周报等。 一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式: 利用 wewerss,建议使用 Docker。浏览器打开 http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口)。 点开后输入 Dash 管理页面密码,先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号。 然后在公众号源上,点添加,将想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章,但建议不要短时间订阅太多公众号(最好不超 40 个)。在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db。
2025-02-17
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
测绘地理信息可以使用的大模型有哪些?
以下是一些测绘地理信息可能使用到的大模型获取途径和相关信息: 1. 常用的模型网站有: 2. 关于 SDXL 大模型: SDXL 的大模型分为两个部分,base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化以生成细节更丰富的图片。此外,还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。然后将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 3. 模型下载和分辨: 在 Civitai 网站下载模型时,可通过科学上网,点击右上角筛选按钮找到所需模型类型,如 Checkpoint = 大模型、LoRA = Lora。感兴趣的模型可点击“Download”下载保存到电脑本地。 模型下载保存地址:大模型可存放在 SD 根目录(即下载 SD 时存放的文件夹);Lora 和 VAE 也有相应的存放位置。 若不知道下载的模型类型及应存放的文件夹,可使用秋叶的模型解析工具 https://spell.novelai.dev/,将模型拖动到空白处查看模型信息。
2025-02-15
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
物流公司信息系统管理员给同事讲解大模型入门级使用,帮忙推荐一些经验
以下是为物流公司信息系统管理员推荐的大模型入门经验: 一、什么是大模型 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、数字化与 Embedding 数字化便于计算机处理,但为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding。常见的算法有: 1. 基于统计: Word2Vec,通过上下文统计信息学习词向量。 GloVe,基于词共现统计信息学习词向量。 2. 基于深度网络: CNN,使用卷积网络获得图像或文本向量。 RNN/LSTM,利用序列模型获得文本向量。 3. 基于神经网络: BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练。 Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 参考:
2025-02-11
怎么把批量提取的信息自动写入表格
目前知识库中没有关于如何将批量提取的信息自动写入表格的相关内容。但一般来说,您可以使用编程语言如 Python 来实现这一功能。例如,使用 Python 的`pandas`库,它提供了丰富的方法来处理数据并写入表格。您需要先读取提取的信息,然后将其整理为合适的数据结构,再使用`pandas`的`to_excel`或`to_csv`等方法将数据写入表格。另外,一些办公软件如 Excel 本身也可能具有批量导入数据的功能,您可以查看相关的帮助文档来了解具体操作方法。
2025-02-11
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
我想了解如何在微信公众号搭建一个能发语音的数字人
以下是在微信公众号搭建能发语音的数字人的相关步骤: 1. 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 工作流地址:https://github.com/chaojie/ComfyUImobvoiopenapi/blob/main/wf.json 相关文件: 记得下载节点包,放进您的 node 文件夹里,这样工作流打开就不会爆红了!ComfyUI 启动后就可以将 json 文件直接拖进去使用了! 2. 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人: 组装&测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入即可。 组装&测试步骤: 将上文写好的 prompt 黏贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能:工作流、知识库。 【预览与调试】模块,直接输入问题,即可与机器人对话。 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮即可将“AI 前线”发布到微信、飞书等渠道。 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据以下截图,去微信公众号平台找到自己的 App ID,填入确定即可。不用了解绑即可。 最后去自己的微信公众号消息页面,就可以使用啦。
2025-02-18
如何快速了解ai
以下是快速了解 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。知识库提供了很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于希望继续精进的情况,还可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 另外,还可以通过一些具体的例子来了解 AI 是什么,比如: 1. 从计算机科学和人工智能之父图灵的故事开始,他在二战期间构建的机器破译了德军的密码,并提出了“图灵测试”的方法。 2. 观看 2024 年春 OpenAI 公司发布新一代 ChatGPT 聊天机器人(GPT4o)产品时的发布会视频,感受其接近人类交流的体验。思考 ChatGPT 是否可以跨越图灵测试,以及关于 AI 是否拥有自主意识等新问题。
2025-02-18
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16
从0开始了解AI
以下是为您提供的从 0 开始了解 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-14