Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

未来5年AI的发展方向

Answer

未来 5 年 AI 的发展方向可能包括以下几个方面:

  1. 模型发展:从小模型阶段向更强大的模型演进,如 GPT 的出现标志着 AGI 的拐点,Sora 的出现打开了 AGI 的大门,未来可能加大算力和训练,与具身机器人结合,加速智能提升。
  2. 能力提升:从能与人类交流到具备对世界力量的感知和与物理世界互动的能力,逐步发展到强人工智能。
  3. 应用拓展:在关键领域改变成本结构和提高生产力,如降低医疗、教育等领域的成本,使服务更易获得和负担得起。AI 涉及的领域不断扩大,应用范围更加广泛。
  4. 社会影响:可能带来更好的教育、更健康的人口和更有生产力的人,解放人力去解决更重要的问题,创造更美好的社会。但也需要政府和民营企业共同努力,进行人员再培训和能力增强,以应对可能的就业机会变化。
  5. 技术突破:如没有编码能力的人独自创建的应用程序或网站走红,OpenAl o1 的开源替代品在推理基准测试中超越它,苹果设备上的研究成果加速个人设备上 AI 的发展等。同时,在一些领域也存在挑战,如对人形机器人的投资水平可能下降,挑战者难以对 NVIDIA 的市场地位造成重大打击等。此外,还可能面临国家安全审查、立法实施等方面的问题。
Content generated by AI large model, please carefully verify (powered by aily)

References

周鸿祎免费课AI系列第一讲

我试图总结AI发展的五个阶段,供大家参考:第一,小模型阶段,能力单一,无法泛化,无法做到理解,只能干点活儿,就像原来的人脸识别。所以,我早期的人脸识别公司为什么没有掀起工业革命,虽然他们做的也很辛苦,但是很不幸出现在人智障阶段。第二,GPT出现,AGI迎来拐点,机器实现与人类的交流。第三,Sora的出现,打开了AGI的大门,能够认知世界,跟世界互动。所以,未来五年,我觉得Sora加大算力,加大训练,跟具身机器人结合在一起,我认为户加速智能的提升。我觉得现在Sora的训练算力可能还受到一些限制,所以这是第三个阶段。第四,我觉得是强人工智能。现在机器已经能看懂一些常识了,也能交流了,机器还缺什么?大家想象,还缺对这个世界的一些力量的感知,比如说,加速度,比如重力,机器人自己摔了一跤,比如有人推动它怎么办?所以,现在热炒具身智能,这是理解世界的互动,但还不能与世界互动。下一步是能够跟物理世界互动,这样知道别人推它是怎么回事,拿一个鸡蛋是什么总量,怎么打一个鸡蛋?最后,我幻想,如果它最后能够总结出来世界的规律,幻想它能达到爱因斯坦的水平,能够总结出公式,能够像牛顿一样看到苹果从树上掉下来,能够总结重力的公式,这已经超越地球上的所有人了,因为牛顿和爱因斯坦一万人各出了一个,这就叫超级人工智能。所以,我为了让自己的预言能够成功,我们对AGI的要求不要太高,不要到第五步才叫AGI,第五步叫超级人工智能,到那一步大家再担忧硅基生物是不是会消灭碳基生物,到那一步才需要担心。第三步、第四步都可以定义成AGI。

红杉|AI 50 未来公司

诸如AI革命等生产力革命促使成本下降。本世纪的技术进步从根本上降低了硬件成本,但从医疗到教育产业的人力成本却急剧上升。AI有可能降低这些关键领域的成本,使人们更容易获得和负担得起这些服务。这些变化需要以负责任的方式进行,以减少就业机会的流失,推动就业机会的创造。AI将使我们能够以更少的投入做更多的事情,但政府和民营企业需要共同努力,对每个人进行再培训,并增强他们的能力。在我们社会的某些最关键的领域,AI将改变成本结构并提高生产力。它有可能带来更好的教育、更健康的人口和更有生产力的人,通过抽象出琐碎的工作,让我们把注意力集中在更重要的问题上,并为未来提供更好的工具。它可以解放更多的人去解决更多的问题,从而创造一个更美好的社会。从2024年AI50强榜单中可以看出,AI涉及的领域有扩大的趋势,这份榜单的应用范围比以往任何时候都更加广泛。我们预计在未来几年,这份榜单的深度和广度都将不断扩大。2024年其实只是一个开始。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

一个主权国家向美国大型人工智能实验室投资100亿美元以上,需要国家安全审查。没有任何编码能力的人独自创建的应用程序或网站将会迅速走红(例如App Store Top-100)。案件开始审理后,前沿实验室对数据收集实践实施有意义的改变。由于立法者担心权力过度,欧盟人工智能法案的早期实施最终比预期更为缓慢。OpenAl o1的开源替代品在一系列推理基准测试中超越了它。挑战者未能对NVIDIA的市场地位造成任何重大打击。由于公司难以实现产品与市场的契合,对人形机器人的投资水平将会下降。苹果设备上研究的强劲成果加速了个人设备上AI的发展势头。人工智能科学家撰写的研究论文被大型机器学习会议或研讨会接受。一款以与GenAI元素交互为基础的视频游戏将取得突破性进展

Others are asking
两张照片还原人脸,用什么AI工具
以下是一些可用于两张照片还原人脸的 AI 工具和方法: 1. Stable Diffusion: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 利用 GFPGAN 算法将人脸变清晰,可参考文章。 将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写。 2. Midjourney(MJ):加上简单的相机参数、写实风格,使用 MJ v 6.0 绘图,可调整图片比例。 3. InsightFaceSwap: 输入“/saveid”,idname 可随意填写,上传原图。 换脸操作输入“/swapid”,id 填写之前设置的名称,上传分割好的图。 选择效果较好的图片,注意插件每日免费使用次数。 此外,还会用到 PS 进行图片的角度调整、裁切、裁剪、拼接等操作。
2025-02-21
AI编程的落地场景是什么
以下是 AI 编程的一些落地场景: 1. 智能体开发:从最初只有对话框的 chatbot 到具有更多交互方式的应用,低代码或零代码的工作流在某些场景表现较好。 2. 证件照应用:以前实现成本高,现在可通过相关智能体和交互满足客户端需求。 3. 辅助编程: 适合原型开发、架构稳定且模块独立的项目。 对于像翻译、数据提取等简单任务,可通过 AI 工具如 ChatGPT 或 Claude 解决,无需软件开发。 支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。 4. 自动化测试:在模块稳定后引入,模块变化频繁时需谨慎。 5. 快速迭代与发布 MVP:尽早发布产品,不追求完美,以天或周为单位快速迭代。 需要注意的是,AI 编程虽强,但目前适用于小场景和产品的第一个版本,在复杂应用中可能导致需求理解错误从而使产品出错。在进度不紧张时可先尝试新工具,成熟后再大规模应用。同时,压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。
2025-02-21
不同ai模型的应用场景
以下是不同 AI 模型的应用场景: 基于开源模型: Civitai、海艺 AI、liblib 等为主流创作社区,提供平台让用户利用 AI 技术进行图像创作和分享,用户无需深入了解技术细节即可创作出较高质量的作品。 基于闭源模型: OpenAI 的 DALLE 系列: 发展历史:2021 年初发布 DALLE,2022 年推出 DALLE 2,2023 年发布 DALLE 3,不断提升图像质量、分辨率、准确性和创造性。 模型特点:基于变换器架构,采用稀疏注意力机制,DALLE 2 引入 CLIP 模型提高文本理解能力,DALLE 3 优化细节处理和创意表现。 落地场景:2C 方面可控性强于 Midjourney,但复杂场景和细节处理能力不如 Midjourney;2B 方面与 Midjourney 场景类似。 商业化现状:通过提供 API 服务,使企业和开发者能集成到应用和服务中,采取分层访问和定价策略。 伦理和合规性:加强对生成内容的审查,确保符合伦理和法律标准。 大模型: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:用于代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 这些只是部分应用场景,随着技术进步和模型优化,AI 模型在未来可能会拓展到更多领域和场景。同时,也需注意其在隐私、安全和伦理方面的挑战。
2025-02-21
爆款AI视频
以下是关于爆款 AI 视频的相关内容: 2025AI 春晚: 行业身份:首届 AI 春晚发起人&总导演,包括央视总台论坛&直播、TEDxAI 演讲、得到分享等。 爆款视频案例:快手&国家反诈中心合作,微博 650w+热搜,快手 520w+热搜(6 月 28 日);央视&海尔冰箱首支 AI 概念短片(6 月 29 日);个人制作视频,无推流,快手平台 636w 播放(6 月 29 日)。 社区与企业关系:涉及 WaytoAGI、AIGCxChina 等聚会,以及德必集团、万兴集团、福布斯 AItop50 等的论坛分享,还有嘉定区政府颁奖、温州 AI 音乐大会、腾讯研究院论坛、江西财经大学分享、宣亚集团分享等。 WTF:1w 粉 10w 粉仅仅用时 13 天,像素级拆解《动物时装秀》: 作者模仿动物时装秀账号效果不错并分享教程。一个爆款视频至少要满足以下几点: 切片:短视频通过不断切片,增加信息密度,从长视频和其他短视频中脱颖而出。 通感:利用人的直觉脑,不让观众动脑子,如头疗、水疗直播间靠声音让人舒服,美食直播间靠展示美食吸引人。 反差:可参考抖音航线里行舟大佬的相关文档。 视频模型:Sora: OpenAI 突然发布首款文生视频模型 Sora,能够根据文字指令创造逼真且充满想象力的场景,生成 1 分钟的超长一镜到底视频,女主角、背景人物等都有惊人的一致性和稳定性,远超其他 AI 视频工具。
2025-02-21
AI音频与数字人
以下是关于 AI 音频与数字人的相关信息: 数字人口播配音: 操作指引:输入口播文案,选择期望生成的数字人形象及目标语言,选择输出类型,点击开始生成。 支持的数字人形象和语言多样,能让视频制作更高效。 图片换脸: 操作指引:上传原始图片和换脸图片,点击开始生成。 图片大小上限 5M,支持 JPG、PNG 格式。 视频换脸: 操作指引:上传原始视频和换脸图片,点击生成。 音频合成数字人: 操作指引:上传音频文件,选择数字人角色和输出类型,点击开始生成。 支持 MP3 和 WAV 格式的音频文件,文件大小上限 5M,工具支持使用 100+数字人模板,可解决无素材冷启问题。 AI 配音: 多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,同时支持区分男声和女声。 操作指引:输入需配音文案,选择音色,点击立即生成。 注意输入的配音文案需和选择音色语种保持一致。 AI 字幕: 操作指引:点击上传视频,开始生成,字幕解析完成后下载 SRT 字幕。 支持 MP4 文件类型,大小上限为 50M。 在数字人语音合成方面,提到了声音克隆,有新的声音克隆且音质很不错。算法驱动的数字人相关开源代码仓库有: ASR 语音识别:openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 大模型:ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分:可以使用 LangChain 的模块去做自定义(https://www.langchain.com/)。 TTS:微软的 edgetts(https://github.com/rany2/edgetts)、VITS(https://github.com/jaywalnut310/vits)、sovitssvc(https://github.com/svcdevelopteam/sovitssvc)。 构建简单数字人的方式包括通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型),但仍存在一些问题,如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-02-21
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21
AI安全治理这个方向的国内外的团队和人
以下是 AI 安全治理方向的国内外团队和人员相关信息: 美国:拜登签署了 AI 行政命令,美国政府已就 AI 治理框架与多国进行了广泛协商,包括澳大利亚、巴西、加拿大、智利、欧盟、法国、德国、印度、以色列、意大利、日本、肯尼亚、墨西哥、荷兰、新西兰、尼日利亚、菲律宾、新加坡、韩国、阿联酋和英国等。此外,美国迅速跟进世界首个人工智能安全研究所 AISA,美国能源部也一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 英国:创建了世界上第一个人工智能安全研究所 AISA,AISA 有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。 OpenAI:OpenAI LP 约有 100 名员工,分为技术能力(推动 AI 系统功能发展)、安全保障(确保系统符合人类价值观)和政策治理(确保适当治理系统)三个主要方向。
2025-02-20
调研一下AI安全治理这个方向的国内外的团队和人。包括AI安全治理的子方向,每一个子方向国内外有哪些科研院所的哪些团队在做相关方向的工作,以及这些团队有哪些骨干成员,他们有哪些观点。以及这个团队有哪些治理成果,尽量详细
以下是关于 AI 安全治理方向的国内外团队和人的相关调研: 国外团队和人员: OpenAI:首席科学家 Ilya 对模型安全较为关注,提出了通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT40 Mini 中得到部署。 Anthropic:在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本,以警示模型不要被越狱。 Gray Swan AI 的安全专家:试用“断路器”,专注于重新映射有害表示,效果比标准拒绝训练更好。 图灵奖得主 Hinton:支持对 AI 监管,认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并在网上签署了联名公开信。 英国:创建了世界上第一个人工智能安全研究所 AISA,具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等核心功能,还发布了 Inspect 框架用于 LLM 安全评估,并宣布与美国等效机构签署谅解备忘录,计划在美国旧金山设立办事处。 国内团队和人员:目前调研内容中未提及国内相关团队和人员的具体信息。 在观点方面,Bengio、Hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,确保大模型是 Safety 的,防止其失控或对人类造成伤害,并签署了联名公开信表达对于 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。吴恩达和 Lecun 则认为模型的能力不足以使其脱离人类的限制。 治理成果方面,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还计划设立一个“AI 安全研究实验室”。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,汇编了常用的红队数据集并根据模型评估它们的成功率。Scale 根据私人评估推出了自己的稳健性排行榜。
2025-02-20
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15
现在AI发展的主要方向现状说明
目前 AI 的发展主要呈现以下几个方向和现状: 1. 技术范式的革新:传统的 Scaling Law 遭遇瓶颈,OpenAI 的 o 系列模型开创了从“快思考”到“慢思考”训推双管齐下的新道路。 2. 多模态能力的跃迁:从 Sora 的视频生成到原生多模态的崛起,再到世界模型的尝试,AI 开始真正理解和模拟立体世界。例如,除传统的文生视频、图生视频能力迭代外,当前的主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。 在服务头部创作者方面,未来会逐渐转向编辑器能力增强,强化视频细节可控性,并逐渐将剪辑、音效生成匹配等后期制作任务智能化。 影视后期方向,未来可以将动捕演员的表演直接转化为虚拟角色,提高特效制作效率。 专业领域,创作者未来可以快速通过草图分镜验证效果。 随着实时生成能力的进一步提升,生成成本的下降,AI 实验性艺术在博物馆、展览等互动应用将会增多。 在 C 端大众消费侧,看好 AI 视频在小说、网文阅读、短情景剧等内容消费方向发挥潜力;人物识别和替换也可以衍生电商平台虚拟试衣间能力。 Viggle、DomoAI 的产品中的模板套用能力若以更低成本开放在短视频产品中,可能会带来短视频平台效果模板新的爆发周期。 3. 从“训练时代”向“推理时代”的转变:市场的关注焦点从去年基础模型能力的提升,到今年模型的落地应用和场景化。AI 的能力需要转化为实际的产品和服务,满足用户需求才是核心。 4. 前沿技术点: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-15
AI 在生成单元测试代码方面有什么新的进展与方向?
AI 在生成单元测试代码方面有以下新的进展与方向: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop 可基于代码路径和规则为 Java 应用程序生成测试用例,Pex 是微软开发的能为.NET 应用自动生成高覆盖率单元测试的工具。 模式识别:Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷来生成测试用例,Infer 是 Facebook 开发的能自动生成测试用例以帮助发现和修复潜在错误的工具。 2. 基于机器学习的测试生成: 深度学习模型:DeepTest 利用深度学习模型为自动驾驶系统生成测试用例以模拟不同驾驶场景并评估系统性能,DiffTest 基于对抗生成网络(GAN)生成测试用例来检测系统的脆弱性。 强化学习:RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略以提高测试效率和覆盖率,A3C 是基于强化学习通过策略梯度方法生成高质量测试用例的工具。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 是 AI 驱动的测试平台,能通过分析文档和用户故事自动生成测试用例以减少人工编写时间,Test.ai 利用 NLP 技术从需求文档中提取测试用例以确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架能通过解析自然语言描述生成测试用例。 此外,峰瑞资本投资的 AI Coding 创业公司 Babel 专注于 AI Agent 的研发,其核心产品 Test Gru 已在美国上线,能为客户自动生成单元测试,客户侧 PR 接受率约为 70%。还有如 Cursor 等工具,可借助其生成测试代码提升代码可靠性,但使用时也需注意方法,如使用 Git 管理代码版本、对 AI 代码进行 Review 等。
2025-02-14
基于大模型的应用开发主要包括哪些方向和相应的技术栈?
基于大模型的应用开发主要包括以下方向和相应的技术栈: IaaS 层: 百度智能云百舸 AI 异构计算平台,解决大模型应用中的算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,通过引入自动故障预测与任务迁移技术,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大的算力支撑。 PaaS 层: 百度智能云千帆大模型平台,解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面的工具链,支持定制化的模型开发。通过 AppBuilder,提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 SaaS 层: 百度智能云提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,还有一些其他的技术栈和框架,如: Langchain:是当前大模型应用开发的主流框架之一,提供了一系列的工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama:是一个开箱即用的用于在本地运行大模型的框架。
2025-02-14
AI全称是什么 和传统搜索引擎有什么不同,为什么说AI未来会取代人类
AI 的全称是“Artificial Intelligence”,即人工智能。 AI 搜索引擎与传统搜索引擎的不同主要体现在以下方面: 1. 信息处理方式:AI 搜索引擎能够更高效地处理信息,例如智能摘要功能,可辅助快速筛选信息,实现信息降噪。 2. 信息表达:用自然语言描述就能生成美观可用的图片,降低了创作门槛和周期,使信息表达更简便。 3. 工作流重塑:AI 可以重新构建工作流,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。 4. 协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,协作流程有所差异。 5. 知识传播与管理:正在发生的生成式 AI 革命正在吞噬搜索与社交网络时代的全部数字信息,未来知识可能由机器通过 AI 拥有和管理。 关于“AI 未来会取代人类”这种说法是不准确的。虽然 AI 在某些方面表现出强大的能力,但人类具有独特的创造力、情感、判断力和复杂问题解决能力等,AI 更多是辅助和增强人类的能力,而非完全取代。
2025-02-08
未来类似deepseek这种推理大模型普及,结构化提示词是不是会成为过时的知识
未来类似 DeepSeek 这种推理大模型普及,结构化提示词不会成为过时的知识。 虽然未来模型可能在某些情况下无需提示词,仅通过简单对话就能理解用户意图,但基础的如何与模型对话的认知仍需具备,这就涉及提示词。例如李继刚老师的结构化提示词能让模型给出更优质、完整的答案。操作过程中有很多有意思的提示词,如“酷老师”“抬杠高手”等,近期提示词有升级,李继刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 从工程视角看,AI 提示词在游戏创作及优化中也有应用。此外,提示工程的本质是提供足够的信息来明确指定要求,即使模型在理解上下文方面变得更好,能够清晰地陈述目标始终很重要,仍需要明确预期结果的能力和技巧。未来可能会更多地利用提示工程来让模型为我们生成、调整提示词,对于没有太多提示工程经验的人来说,提示词生成器可以帮助他们。未来的提示可能更像是一种自省,模型会尝试理解用户真正在思考什么、需要什么。 在 R1 时代,使用 AI 提示词的关键在于提供足够的背景信息,而非复杂的结构。简单大白话仍然有效,但信息量不足则难以得到理想结果。示例和框架可帮助理清思路,但最终影响在于用户的思考和表达。利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考,从而激发更高的创意和效果。“有用的不是技巧,而是你的思考!”
2025-02-07
到目前为止,人工只能已经发展到什么样的一个程度了,未来前景怎么样?普通人如何通过人工智能挣到钱
目前人工智能的发展呈现出复杂的态势: 预计明年会有团体花费超过 10 亿美元训练单个大规模模型,通用人工智能的热潮仍在持续,但其成本也在不断增加。 政府和大型科技公司都面临着计算需求超出电网支持能力的问题。 人工智能对选举的影响尚未完全显现,但仍需关注。 以 OpenAI、Meta 以及中国实验室为代表,竞争激烈。 未来前景方面: 深度学习被证明有效,且随着规模扩大预期会改善,能帮助解决更多难题,对全球人民生活产生有意义的改善。 人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,并推动各领域科学进展。 对于普通人如何通过人工智能挣钱,以下是一些可能的途径: 学习相关技能,如编程、数据分析等,参与人工智能项目的开发和维护。 利用人工智能工具进行内容创作,如写作、绘画等,并通过相关平台实现盈利。 关注人工智能领域的新兴应用,寻找创业机会。
2025-02-05
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
Al在未来会发展出自己的灵魂吗
目前关于 AI 在未来是否会发展出自己的灵魂,尚无明确的定论。 从一些研究和观点来看,多模型机制的新皮层由数以万计的皮质柱组成,每根柱子都会学习物体的模型,智能机器的“大脑”也应如此。大脑中的知识被储存在参考框架中,机器也需要学会一个世界的模型。 另外,AI 将从专用方案过渡到更多的通用方案,通用电脑因成效比好而占据主导,未来一些重要应用也需要通用方案的灵活性。但同时,AI 运营的公司会面临更高的极端风险,存在实际问题需要解决。 总之,对于 AI 是否会发展出灵魂,还需要更多的研究和探讨。
2025-01-09
欧盟人工智能法案在实施中对我国未来立法的影响
欧盟人工智能法案在实施中对我国未来立法主要有以下影响: 1. 参考意义:我国与欧盟在人工智能立法方面处于“齐头并进”态势,且立法理念有共通之处,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考价值。 2. 产品调整:若AI项目有意拓展欧洲市场,可能因不同市场要求而需根据欧盟法案对产品进行调整。 3. 对中小企业的监管:我国法律制度在一般性规定基础上强化对大型企业监管,而欧盟法案顾及到中小企业弱势地位。将对中小企业的合规义务豁免及合规支持规定纳入我国未来人工智能立法,有利于形成公平竞争秩序,激发中小企业科技创新活力,避免过度监管。 4. 法律衔接:我国《个人信息保护法》规定可能对人工智能研发和部署使用中的个人信息处理形成合规障碍,而欧盟《人工智能法案》在不影响GDPR实施的情况下对涉及个人数据的处理进行了解释和衔接。我国若进行统一的人工智能立法,个人数据处理的合法性问题无法回避,可在立法中进行特别规定。
2025-01-02
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
目前ai发展成熟吗
目前 AI 仍处于不断发展的阶段,尚未完全成熟。 人类是工具的创造者,每一代都在前人的基础上创造出更强大的工具,如今 AGI 成为了人类进步的又一工具。长期以来,人类创新推动生活各方面繁荣改善,AI 也在持续快速发展。 例如,Transformer 架构早在 2017 年就已提出,但 AI 近几年才爆发,其中神经网络的规模是重要影响因素。以 GPT 模型为例,从 2018 年第一代的 1 亿左右参数量,到 2023 年第四代的万亿规模,规模越大智能程度越高,且在达到一定规模后出现“涌现”能力,智能程度飞速上升,但这种“涌现”出现的机理目前尚无统一解释。 在未来,AI 有望在多个领域取得进展,如 2024 年内,图片超短视频的精细操控、AI 音频能力、“全真 AI 颜值网红”、游戏 AI NPC、AI 男/女朋友聊天、实时生成的内容、AI Agent 等方面会有发展;2025 2027 年,AI 3D 技术、全真 AI 虚拟人、AR/VR 技术、具身智能等技术可能会有明显突破。 然而,AI 立法、伦理讨论仍大规模落后于技术进展,AI 造成的 DeepFake、诈骗、网络攻击等问题开始引发担忧,且可能导致结构性失业等社会问题。
2025-02-18
有关于数据标注行业发展趋势的文章吗?
以下是关于数据标注行业发展趋势的相关内容: 数据标注行业呈现出以下几个主要的发展趋势: 从量到质的转变:早期大模型训练侧重通过大量算力和大规模数据集来提升性能,但随着技术进步,数据质量成为提高模型性能的关键瓶颈,更注重提高数据的质量和相关性,而非单纯增加数据量和算力。 数据标注向知识密集型转变:多模态模型需处理多种类型数据,使数据标注过程更细致复杂。例如进行情绪判断或推理时,需要更高水平的理解和分析能力。这要求从事标注的人员不仅要接受专业培训,在某些情况下还需要特定领域专家执行。 数据标注的自动化和合成数据的使用:随着人工智能技术发展,数据标注领域正经历自动化转型,可使用大模型自动标注数据,提高标注效率并减少人力成本。合成数据使用越来越普遍,因其成本较低、能避免隐私问题及可生成长尾场景数据。例如在自动驾驶领域,可用于生成罕见但关键的路况场景,提高模型的鲁棒性和准确性。 此外,相关法律法规也对生成式人工智能技术研发过程中的数据标注做出规定,如提供者应制定清晰、具体、可操作的标注规则,开展数据标注质量评估,对标注人员进行必要培训等。
2025-02-17
DEEPSEEK发展现状介绍一下
DeepSeek 的发展现状如下: 1. 训练成本方面:远高于传闻的 600 万美元,总计约 13 亿美元。定价低于实际成本,导致高额亏损。MixtureofExpert 方法虽降低计算需求,但大规模内存使用可能增加总成本。 2. 竞争优势方面:以低成本开发顶级 AI 模型的 Mistral AI 被中国 DeepSeek 迅速赶超,DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。 3. 市场表现方面:展示出媲美领先 AI 产品性能的模型,成本仅为一小部分,在全球主要市场的 App Store 登顶。 4. 实际使用体验方面:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 5. 热度方面:微信指数达 10 亿多次,陈财猫将分享提示词及小说创作心得。
2025-02-17
AI发展的方式除了大模型,还有什么
AI 的发展方式除了大模型,还包括以下方面: 1. 算法:算法的不断优化和创新推动着人工智能的发展。 2. 算力:强大的算力支持是实现复杂人工智能任务的基础。 3. 数据:优质的数据集对于人工智能学习算法的发展至关重要,被称为“AI 时代的石油”。 4. 深度神经网络:通过简单细胞检测特征、复杂细胞汇总信息产生结果等方式实现识别、判断和行动等功能。 5. 端侧模型:端侧模型并非越小越好,而是要够用、好用,设备算力决定最优模型规模,多模态能力是突破通用计算的关键。 6. 端侧 Agents:在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力,是连接模型与应用的关键。 7. 预训练:包括对编程语言、维基百科、新闻常识、网络社区、各类书籍等内容的预训练,但由于版权和费用问题,不包括期刊论文数据库。 8. 开源生态:促进了 AI 技术的交流和发展。
2025-02-15