Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型

Answer

以下为您推荐可用于图生图(img2img)的大模型:

  1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。
  2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 2048*2048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
Content generated by AI large model, please carefully verify (powered by aily)

References

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

Stable Diffusion(SD)模型是由Stability AI和LAION等公司共同开发的生成式模型,总共有1B左右的参数量,可以用于文生图,图生图,图像inpainting,ControlNet控制生成,图像超分等丰富的任务,本节中我们以文生图(txt2img)和图生图(img2img)任务展开对Stable Diffusion模型的工作流程进行通俗的讲解。文生图任务是指将一段文本输入到SD模型中,经过一定的迭代次数,SD模型输出一张符合输入文本描述的图片。比如下图中输入了“天堂,巨大的,海滩”,于是SD模型生成了一个美丽沙滩的图片。SD模型的文生图(txt2img)过程而图生图任务在输入本文的基础上,再输入一张图片,SD模型将根据文本的提示,将输入图片进行重绘以更加符合文本的描述。比如下图中,SD模型将“海盗船”添加在之前生成的那个美丽的沙滩图片上。SD模型的图生图(img2img)过程那么输入的文本信息如何成为SD模型能够理解的机器数学信息呢?很简单,我们需要给SD模型一个文本信息与机器数据信息之间互相转换的“桥梁”——CLIP Text Encoder模型。如下图所示,我们使用CLIP Text Encoder模型作为SD模型中的前置模块,将输入的文本信息进行编码,生成与文本信息对应的Text Embeddings特征矩阵,再将Text Embeddings用于SD模型中来控制图像的生成:蓝色框就是CLIP Text Encoder模型,能够将输入文本信息进行编码,输出SD能够理解的特征矩阵

AIGC Weekly #42

Adobe上周发布了Firefly image 2 Beta测试版本,增加了非常多的功能,模型质量也强了好多,卷起来了。我试了一下发现image 2模型的图片分辨率默认居然是2048*2048的,太强了。而且对图片的控制能力增强许多,这再搭配上Photo shop的蒙版之类的拉满了。Firefly image 2模型:具有更高质量的图像和插图生成,以及自定义选项和改进的动态范围。生成匹配:就是img2img,应用预先选择的图像集中的风格或上传你自己的风格参考图像,可以快速创建相似图像。照片设置:应用和调整照片设置,类似于手动相机控制,以实现更逼真的图像质量,具有更高保真度的细节(包括皮肤毛孔和树叶)以及运动模糊和景深等效果。提示建议:输入提示词的时候,输入框上方会给出一些提示词书写建议选择就可以使用。提示链接共享:其他人点开你分享的提示的时候,可以快速应用提示词及相关设置。反向提示词:通过输入你不想生成内容的提示词,可以排除对应内容。

进阶:Mazz的SD进阶分享

|多行文本|备注|标签|附件||-|-|-|-||[Earth Ninja](https://civitai.com/posts/196183)|I am sorry that I cannot write all the information here because the workflow is quite complex and the prompt and model often change.<br>The base prompt is:<br>epic realistic,(dark shot:1),1girl,ninja floating,textured clothing,dragon_head,smoke,(((sandstorm))),(flying stone),(((dust explosion:1))),wind,(motion blur),realistic,solo_focus,(dark_background),3d Model<br>The main model is:<br>[Niji3dstyle](https://civitai.com/models/46898/niji3dstyle)/[Lyriel](https://civitai.com/models/22922/lyriel)/[Dreamshaper](https://civitai.com/models/4384/dreamshaper)<br>I also used:[Nijiexpress Lora](https://civitai.com/models/44023/nijiexpressivev1).<br>The initial screen was created using img2img from a hand-drawn sketch,the characters'poses were controlled using ControlNet Openpose,and a lot of Inpaint and Inpaint Sketch was used for sand and smoke,and for the dragon,Inpaint Sketch was used.I recommend using the"[Canvas-Zoom](https://github.com/richrobber2/canvas-zoom)"extension for Inpaint.Of course,a lot of Photoshop processing and img2img iterations were also involved in the entire process.<br>The entire job took about 6 hours.<br>I hope the above information is helpful to everyone.|||[heading1]教程开始:

Others are asking
图片生成提示词的网站
以下是一些图片生成提示词的网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分,网址: OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便您快速可视化生成自己的绘画提示词,网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney,网址: OpenArt:AI 人工智能图像生成器,网址: img2prompt:根据图片提取 Prompt,网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供您选择,网址:
2025-02-13
基于参考图片人物形象生成指定迪士尼风格的图片
以下是关于基于参考图片人物形象生成指定迪士尼风格图片的相关内容: 在 Midjourney 中,生成指定迪士尼风格的图片可以通过以下方式: 1. 角色参考(cref):cref 的功能是保持图像角色的一致性。使用方法是在提示后添加 cref,并紧接着指向人物参考图像的 URL。您可以使用 cw 来调整参考图像对生成的图像的影响程度,数值范围从 0 到 100。 2. 风格参考(sref):sref 的功能是生成类似风格的图片,保持画风的一致性。使用方法是在提示后添加 sref,并紧接着指向风格参考图像的 URL。您可以使用 sw 来调整参考风格对生成的图像的影响程度,数值范围从 0 到 1000。 如果想引用一张图,但只是把它作为新图的一部分,可以使用 sref 或 cref,并通过调整 sw 或 cw 的值来控制引用图像的影响程度。 生成一张 Disney 风格的头像的具体步骤如下: 1. 选一张比较满意的图片,在 Discord 社区的 Midjourney 服务器聊天栏点击“+”,然后点击上传文件,选取图片,然后在聊天框发送(记得点击回车或发送按钮)。 2. 图片会上传到服务器并生成一张唯一的链接,点击图片,然后点击在浏览器中打开,然后可以看到浏览器上方有一个链接,复制下来。 3. 使用这个链接加 prompt 提示词来发送给 Midjourney,Midjourney 会根据需求生成特定的图片,这就是 Midjourney 的以图绘图。 此外,在生成 3D 效果图时,如生成可爱的拟人小鹿角色,可以在即梦图片生成界面中导入参考图,参考选项为参考轮廓边缘,生图模型选择 图片 2.0,输入包含角色、细节描述、场景、风格材质等的提示词,生成图片。
2025-02-12
图片去水印
以下是一些 AI 去水印的工具推荐: 1. AVAide Watermark Remover:这是一个在线工具,运用 AI 技术去除图片水印。它支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简便,上传图片、选择水印区域,然后保存并下载处理后的图片即可。还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,用户可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可选择保存生成的文件,适合需快速去水印并在社交媒体分享图片的用户。 3. AI 改图神器:具备 AI 智能图片修复去水印功能,可一键去除图片中的多余物体、人物或水印且不留痕迹。支持直接粘贴图像或上传手机图像,操作简单方便。 此外,如果想去掉图片中特定的物体,如右手的手串,除了 PS,还可以使用以下工具: SD 局部重绘。 Firefly、Canva、Google photo 都有局部重绘功能。 微软 Designer 免费。 https://clipdrop.co/cleanup 。 这些工具各有特点,您可以根据具体需求选择最适合的去水印工具。内容由 AI 大模型生成,请仔细甄别。
2025-02-12
有什么给图片起名字的AI
以下是一些与给图片起名字相关的 AI 信息: 在全国首例 AI 生成图片著作权案例中,Stable Diffusion 模型可根据使用者输入的提示词生成图片,生成的图片取决于使用者的设计,具有独创性和智力投入,受著作权保护。 目前比较成熟的图生图 AI 产品有: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 Retrato:将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具有细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传的照片转换为芭比风格,效果超级好。 Muse AI 是一款强大的 AI 图片编辑器,用户只需输入文字即可轻松编辑图片,支持多种操作,还能与团队成员或客户实时共享和编辑文件。其官方网站为 。
2025-02-12
可以提高图片分辨率的AI软件
以下是一些可以提高图片分辨率的 AI 软件: 1. ComfyUISUPIR:简单易用,能够提高图片分辨率和质量,但需要下载约 10GB 的 CLIP 模型,可能存在不便。提供了 GitHub 和在线体验链接。 2. InvSR:通过 1 到 5 步提升图像清晰度,用户可在效率与效果间自由调节,即便仅处理一步,也能媲美多步骤方法,适用于老照片修复及生成图优化。 您可以根据自己的需求选择适合的软件。
2025-02-11
图片合成
以下是关于图片合成的相关介绍: ComfyUI BrushNet: 这个过程类似于小时候的连点成图游戏,现在由电脑在图片上操作。 1. 掩码:像有洞的纸覆盖在图片上,电脑程序通过洞了解需修复部分。 2. 编码器:是电脑的大脑,把需修复图片转换成能理解和处理的信息。 3. 噪声潜在空间:加入随机性让修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板,帮助完成修复工作。 5. 去噪和生成图像:去除噪声,创建真实图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片和原始图片融合。 Blend叠加: /blend 命令允许快速上传 2 5 张图片,通过对每张图片的概念和美学分析,将它们合并成新图。 与 /imagine 结合多个 。 在输入 /blend 命令后,会提示上传两张照片,可从硬盘拖放或在移动设备从照片库添加。要添加更多图像,选择 optional/options 字段并选 image3、image4 或 image5。 图像叠加默认 1:1 宽高比,可使用可选的 dimensions 字段选择方形(1:1)、肖像(2:3)或横向(3:2)的长宽比。 与其他 /imagine 命令一样,/blend 指令末尾可添加 ,指定在 /blend 命令中的宽高比会覆盖自定义后缀中的宽高比。为获得最佳处理效果,上传与期望结果相同的图像宽高比。
2025-02-10
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
以知识图谱的形式生成一张涉及大模型概念的知识图谱
以下是一张涉及大模型概念的知识图谱: 大模型 Embedding 技术 句子和文档嵌入 Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。 Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。 Transformers Sentence Embeddings:如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入 Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 图 Embeddings:用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 关键技术标准 机器学习标准:规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。 知识图谱标准:规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 大模型标准:规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。 自然语言处理标准:规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。 智能语音标准:规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。 计算机视觉标准:规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。 生物特征识别标准:规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。 国内大模型 通用模型:如文心一言、讯飞星火等,处理自然语言。 垂直模型:专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 大模型的体验 以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了 Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。 大语言模型的工作原理 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用 b 链形容大小。 Transformer 架构:Transformer 是大语言模型训练架构,17 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 的分类和法则 分为 system prompt、user prompt 和 assistant prompt。 写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG 概念:未对 RAG 的具体内容进行详细阐述,仅提出了这个概念。
2025-02-11
我想用自己训练的卡通形象lora生成一张元宵节放孔明灯的海报,应该怎么制作
以下是用自己训练的卡通形象 lora 生成元宵节放孔明灯海报的制作方法: 1. 关键词: 模型:dreamshaper_8 正关键词:,white,white_background,CGposterrender bsw <lora:电商新年海报 2024_v1.0:0.4>,gold,<lora:新年红包封面_v1.0:0.6>,new year,<lora:gcbottle:0.3> 中文的关键词:(杰作,高分辨率,高品质,高分辨率)中国建筑,红色主题,剪纸,中国结,纸灯笼,中国图案,金色,中国元素,红色背景 2. ControlNet 设置: 预处理器:depth_leres 模型:control_v11f1p_sd15_depth 权重:0.75 预处理器:softedge_pidinet 模型:control_v11p_sd15_softedge 权重:0.3 3. lora 资源: https://www.liblib.ai/modelinfo/bddf824e232f4124991c05a26027504d https://www.liblib.ai/modelinfo/983703dd48134e43983b84abfcb44308 第三个东方瓷器 lora 已经下架(请至 AGI 之路百度云下载) 链接:https://pan.baidu.com/s/10hYM8i2y2Li9OlT2oD1qOQ 密码:asub 您可以参考以上步骤进行制作,同时您还可以访问以下链接获取更多相关信息: 作者小红书:https://www.xiaohongshu.com/user/profile/5cfd0e600000000016029764?wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu 通往 AGI 之路小红书教程:http://xhslink.com/OOeHsy AI 春晚阶段性纪实:https://waytoagi.feishu.cn/wiki/MI0UwhfXJiRH9ak4dwxcwqPVnIh
2025-02-08
如果要用AI重绘一张已有的图片,给怎么做
要用 AI 重绘一张已有的图片,可以按照以下步骤进行: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章——。此步骤可重绘五官,但头发、衣服等元素可能无法变清晰。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。这个放大插件是所有插件中对原图还原最精准、重绘效果最好的。不知道的朋友可以参考文章——。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写,以免对原图产生干扰。 此外,局部重绘的操作如下: 1. 使用大模型“lofi”绘制人物形象,在提示词中加入相关标准化提示词和负面 Embedding 以修复细节问题。 2. 将图片发送到图生图,点击“局部重绘”,用画笔将需要调整的部分涂上作为蒙版。 3. 在正向提示词里添加相应描述和权重,比如,适当增加重绘幅度并生成。 4. 还可以进入涂鸦重绘,用颜色画笔画任意想添加的东西。 在高清修复方面: 1. 文生图高清修复的原理是命令 AI 按照原来的内容重新画一幅,新生成的绘图和原图在细节上会有不同。若想更接近原图,可适当降低重绘幅度,比如 0.2 0.3。 2. 当抽到喜欢的图后,可用随机种子固定图片进行高清修复。由于高清修复渲染耗时较长,一般建议先采用低分辨率抽卡刷图。 3. 第二种放大方式是使用图生图的脚本功能,将文生图发送到图生图,点击脚本选择 SD 放大,重绘幅度设置 0.3,放大倍率为 2,图块重叠像素设置为 64。
2025-02-07
有两张图,一张是手,一张是戒指,如何将戒指套入手上合成一张图
目前没有相关的知识库内容为您提供将手和戒指合成一张图的具体方法。但一般来说,您可以使用专业的图像编辑软件,如 Adobe Photoshop 等。以下是大致的步骤: 1. 打开软件并导入手和戒指的图片。 2. 选择戒指图片,使用抠图工具将戒指抠出。 3. 将抠出的戒指移动到手的图片上,并调整大小、位置和角度,使其看起来像是套在手上。 4. 对合成后的图片进行细节调整,如颜色、光影等,以使合成效果更加自然。 希望这些信息对您有所帮助。
2025-01-17
如何利用Ai制作一张关于英语招生的海报
以下是利用 AI 制作一张关于英语招生海报的方法: 1. 需求场景: 当您想通过社交媒体发布招生信息,纯文字可能吸引力不足。 网上找的图可能质量差且易撞图。 2. 大致流程: 主题与文案:确定英语招生的海报主题,借助 ChatGPT 等文本类 AI 工具完成文案。 风格与布局:选择适合的风格意向,背景可灵活调整,根据文案和风格规划画面布局。 生成与筛选:使用无界 AI ,输入相关关键词,生成并挑选满意的海报底图。 配文与排版:将生成的素材进行合理排版,得到成品。排版可参考 AIGC 海报成果。 3. 软件指引: 使用工具:无界 AI ,网址为 https://www.wujieai.cc/ 。 做图逻辑类似于 SD ,优势在于国内网络可稳定使用、有免费出图点数、支持中文关键词输入、无需额外下载风格模型可直接取用。 使用模型:皮克斯卡通,本案例应用场景为朋友圈 po 图,画幅比例选择 1:1 。 4. 关键词类别: 场景:如教室、校园等。 氛围:积极、活跃等。 人物:老师和学生等。 造型:发型、服饰等。 情绪:快乐、专注等。 道具:英语书、笔等。 构图:全身、特写等。 画面:色彩鲜艳。 特殊:根据具体需求添加。
2025-01-15
如果我想做一个3000字的prompt,能产出8000字的八字批文解析,要求准确度比较高,能否实现
目前的技术水平较难直接实现您所描述的需求。生成准确且高质量的八字批文解析是一个复杂的任务,需要对八字命理有深入的理解和丰富的经验。虽然 AI 可以根据给定的提示生成文本,但要生成 8000 字且准确度较高的八字批文解析存在很大的挑战。这不仅涉及到对大量复杂命理知识的准确把握,还需要考虑到各种特殊情况和细微差别。但随着技术的不断发展,未来或许有可能在一定程度上接近您的期望。
2025-02-12
如何写好Prompt
写好 Prompt 可以参考以下要点: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:避免模糊或歧义词汇,用简单清晰的表述。 4. 给出具体要求:明确格式、风格等要求。 5. 使用示例:提供期望结果的示例,助 AI 理解需求。 6. 保持简洁:避免过多信息导致 AI 困惑。 7. 使用关键词和标签:帮助 AI 理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整。 优化和润色 Prompt 可尝试以下方法: 1. 明确具体描述:使用更具体、细节的词语和短语。 2. 添加视觉参考:插入相关图片参考。 3. 注意语气和情感:用合适的形容词、语气词调整整体氛围。 4. 优化关键词组合:尝试不同搭配和语序。 5. 增加约束条件:如分辨率、比例等限制。 6. 分步骤构建:将复杂需求拆解为子 Prompt 逐步引导。 7. 参考优秀案例:借鉴有效的范例和写作技巧。 8. 反复试验、迭代优化:多次尝试并根据效果反馈完善。 在即梦 AI 视频生成中,Prompt 是直接描述或引导视频生成的文本或指令,类似给 AI 的提示,包含主体、运动、风格等信息,影响视频内容和质量,可将输入的文字变成对应的画面和运动形式。在图片生视频和文本生视频中都有相应的输入位置。
2025-02-11
12个精选Prompt框架
以下是 12 个精选的 Prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 在律师如何写出好的 Prompt 方面: 1. Prompt 指的是给人工智能(AI)系统提供的信息或者问题,用来引导 AI 产生特定的回答或者执行特定的任务。对于 AI 来说,一个好的 Prompt 可以帮助它更准确地理解您的需求,并给出更相关、更有用的回答。 2. Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):比如您希望它的角色是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,比如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,比如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):您希望 AI 以什么风格或方式回答您。 Experiment(举例)。
2025-02-10
prompt框架有哪些
以下是一些常见的 Prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景和上下文,让大模型更好回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息要求,如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示提升整体反馈效率。 背景:提供足够背景信息,让大模型理解问题上下文。 角色设定:特定的角色,让 GPT 根据特定角色能力特点形成响应。 目标:明确任务目标,让大模型知道要做什么。 结果定义:明确可衡量的结果,让大模型清楚自己做的情况。 调整:根据具体情况调整结果。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或方式。 实验:提供多个回答的示例。 此外,还有以下用于 AI Prompts 测试的框架: 1. Langfuse:是一个提供全面 AI Prompts 测试解决方案的平台,允许用户设计和测试 Prompts,比较不同 Prompts 的效果,并评估 AI 模型的性能。网站: 2. Langsmith:也是一个提供全面 AI Prompts 测试解决方案的平台。允许用户设计和测试 Prompts、比较和评估不同 Prompts 的效果、集成和自动化将 Prompts 测试集成到开发流程中实现自动化测试。网站: 选择合适的 AI Prompts 测试框架可以显著提升开发效率和 AI 模型的质量。开发者可以根据自己的具体需求和偏好来选择最合适的工具。
2025-02-08
如何写中医养生账号的prompt提示词
以下是为您提供的关于写中医养生账号 prompt 提示词的一些参考: 1. 角色设定:您可以设定自己为一名资深的中医养生专家,拥有丰富的临床经验和深厚的中医理论知识。 背景:您面对的是一群对中医养生感兴趣,但可能缺乏专业知识的普通大众。他们希望通过您的指导,改善自己的健康状况,预防疾病。 任务:首先,热情地欢迎用户,并强调中医养生对健康的重要性。然后,详细询问用户的身体状况、生活习惯、饮食偏好等方面的信息,以便为其提供个性化的养生建议。 2. 内容规划: 养生知识普及:介绍中医养生的基本理念,如阴阳平衡、气血调和、经络通畅等。 四季养生:根据不同季节的特点,提供相应的养生方法,如春季养肝、夏季养心、秋季养肺、冬季养肾。 体质养生:讲解常见的体质类型,如阳虚体质、阴虚体质、痰湿体质等,并针对每种体质给出相应的调理建议。 饮食养生:推荐适合不同体质和季节的食物,讲解食物的性味归经和功效。 运动养生:介绍适合的运动方式,如太极拳、八段锦、瑜伽等,并说明其对身体的益处。 情志养生:强调保持良好心态的重要性,如如何缓解压力、调节情绪等。 睡眠养生:提供改善睡眠质量的方法,如睡前泡脚、调整卧室环境等。 希望以上内容对您有所帮助,祝您成功打造中医养生账号!
2025-02-07
让AI总结播客的prompt
以下是关于您提到的内容的总结: 在“Claude 工程师聊 prompt”中,提到一个“汉语新解”的 prompt 爆火,探讨了如何写好 prompt 及未来随着大模型进化是否还需为其绞尽脑汁,Anthropic 公司几位负责相关工作的工程师录制播客讨论了好的 prompt 应如何写。 在“夙愿:AI 快速总结群聊消息”中,指出直接将原文发给 GPT 无法按意图工作,需编写提示词让其执行总结文字内容的工作,包括单人发言版和多人发言版,并介绍了后续处理 GPT 输出的方法。 在“杨志磊:对当事人提供的证据发表质证意见或制定诉讼方案”中,对通义千问和豆包 AI 在输入起诉状 prompt 后的表现进行了评测,包括对当事人信息、事实、诉讼请求等方面的处理,格式和内容的符合程度,以及对 prompt 的理解情况。
2025-02-06
img2img
以下是关于 img2img 的相关内容: 用 Stable Diffusion 装饰二维码: 首先使用 img2img 生成类似于 QR 码的图像,但不足以生成有效二维码。在采样步骤中打开 ControlNet 将 QR 码压印到图像上,接近尾声时关闭以提高图像一致性。 分步指南: 1. 在 AUTOMATIC1111 WebUI 中,导航到 Img2img 页面。 2. 选择检查点模型,如。 3. 输入提示和否定提示,提示词如“a cubism painting of a town with a lot of houses in the snow with a sky background,Andreas Rocha,matte painting concept art,a detailed matte painting”,否定提示如“ugly,disfigured,low quality,blurry,nsfw”。 4. 上传二维码到 img2img 画布。 5. 输入以下图像到图像设置:Resize mode:Just resize;Sampling method:DPM++2M Karras;Sampling step:50;Width:768;Height:768;CFG Scale:7;Denoising strength:0.75。 6. 将二维码上传到 ControlNet 的图像画布。 7. 输入以下 ControlNet 设置:Enable:Yes;Control Type:Tile;Preprocessor:tile_resample;Model:control_xxx_tile;Control Weight:0.87;Starting Control Step:0.23;Ending Control Step:0.9。 8. 按生成,用手机查看二维码,确保检查不同尺寸,成功率约四分之一。 Stable Diffusion 核心基础原理: Stable Diffusion 模型可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。以文生图和图生图任务为例讲解工作流程,图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘图片使其更符合描述。输入的文本信息需通过 CLIP Text Encoder 模型编码成机器数学信息,生成 Text Embeddings 特征矩阵用于控制图像生成。 Mazz 的 SD 进阶分享: 初始屏幕由手绘图使用 img2img 创建,人物姿势用 ControlNet Openpose 控制,大量使用 Inpaint 和 Inpaint Sketch 处理沙子、烟雾和龙,整个过程还涉及大量 Photoshop 处理和 img2img 迭代,耗时约 6 小时。
2025-02-12