Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

豆包在AI中的整体表现如何

Answer

豆包在 AI 中的表现如下:

  • 在律师答辩状 prompt 方面:欢迎语直接,但存在一些问题,如主体缺少答辩人、引用案由错误、未按 prompt 结构输出、引用法律错误、内容简单专业性一般等。在提示输出应诉方案时,最初表现一般,未按要求输出,重复输出等,但输入应诉方案框架后,能够按 prompt 结构输出,不过细节仍需打磨,整体不能直接使用。
  • 在大模型方面:去年字节的 AI 战略曾被认为不及格,但今年迅速发展,后来居上。豆包 App 今年 9 月的日活已达 760 万,10 月日活已达 945 万,成为中国日活最大的 AI 产品。
  • 在图像编辑方面:字节发布的新模型 SeedEdit 与业内先进的图像编辑方法相比具有优势,能够理解模糊指令并输出细致准确的结果,相比 DALL-E3、Midjourney 等也能更紧密地跟随指令。豆包大模型在生成式 AI 特别是图像生成领域优势得天独厚,日均生成图片 5000 万张。
Content generated by AI large model, please carefully verify (powered by aily)

References

杨志磊:律师答辩状prompt各模型评测

把prompt输入到豆包AI后,欢迎语很直接。输入起诉状后,输出的内容方面:1、主体上,缺少一个答辩人2、引用案由错误3、没有按照prompt结构输出(1)提出了不可抗力的抗辩(2)引用法律错误,《民法典》第590条内容错误(3)整体上比较简单,专业性一般3、答辩的逻辑和立场,没有问题。提示“请输出应诉方案”后,没有按照prompt结构输出,输出的内容一般,整体方案框架没有问题,需要继续补充完整。我提示“请根据我的提示和框架输出应诉方案”,又重复输出。然后,我把应诉方案的框架输入到模型。输出的应诉方案,内容上:1、能够按照prompt结构输出;2、细节上还需打磨,比较抽象,还得细化;3、整体上一般,不能直接使用。

中国大模型生存战:巨头围剿,创业难熬

“去年字节的AI战略是不及格,但完全不影响今年的满分表现。”昆仑万维创始人周亚辉今天在社交媒体上说,“这符合我对这个组织快速迭代能力(卷死人能力)的预期。”不到12个月里,字节跳动在大模型上后来居上。相比2023年3月率先发布大语言模型的百度,和2020年就研发多模态大模型的阿里,向来看重AI的字节并没有跟上大模型的第一声发令枪。一位字节人士去年曾告诉我们,在ChatGPT横空出世前,字节更看重AI for Science,“押错了宝”。那之前,约有100多人的字节AI Lab NLP(自然语言处理)组里,只有不到10人在研究大语言模型。长期观察中国AI发展的一位研究人员当时也告诉我们,相比其他大公司,字节去年做大语言模型“相当于是从零开始”。他推测,字节很有可能收购一家公司,但头部的创业公司里,没一家愿意卖。字节大模型研发负责人朱文佳,去年四季度OKR的首要目标还是“让语言模型整体效果达到GPT-3.5”。当时百度和一批头部大模型创业公司的进度已来到追赶GPT-4。而今年夏天之后,字节大模型口碑迅速翻转,其产品数据和影响力也今非昔比。据数据分析机构QuestMobile,字节豆包App今年9月的日活已达760万,成为中国日活最大的AI产品;同为生产力场景的Kimi智能助手(Kimi手机版),同期日活则在130多万。一位接近豆包的人士称,只要字节想投放,“豆包日活很快就能破千万”。来到10月,豆包的日活已达945万。

真·打字P图!字节发布新模型SeedEdit,一句话爆改世界名画,可免费体验

把SeedEdit方法与几种业内先进的图像编辑方法进行比较,总体而言,新的方法在两个基准上都显示出了明显更高的分数。同时也可以观察到HQ-Edit数据集中CLIP图像有更高的相似性,这意味着原始图像的内容得到了更好的保留。基准测试成绩。与一些开源方法比较,SeedEdit的优势在于能够理解人们提出的相对模糊的指令,并输出较为细致准确的结果。不同方法的输出结果。即使是和DALL-E3、Midjourney这样已经商用的先进图像生成器(带编辑功能)相比,SeedEdit也可以相对更紧密地跟随人们给出的指令。DALL-E3、Midjourney、SeedEdit之间,不同图像生成工具的效果对比。不得不说,字节提出的方法别具特色,相比业内现有技术又向前跨出了一步。豆包的生成式AI技术,走在前面看到这里,你可能突然意识到,AI领域的风向正在发生转变。一直以来,很多关注AI绘画的人总是在期盼着DALL-E、Midjourney等海外AI创业公司的技术更新。而随着国内的技术不断迭代,我们已经见证了一系列先进的生成式AI应用在外网刷屏。或许到了新技术落地的节点,我们目光更应该向近处看。其实仔细想来,作为全球短视频领域的佼佼者,字节跳动在生成式AI,特别是图像生成领域上的优势可谓得天独厚。早在豆包大模型诞生前,字节就一直在关注AI图像生成相关技术,并持续增加研发投入。豆包大模型尽管入场时间不是最早,但凭借优秀的效果和独特的社交体验迅速成为了国内最热门的大模型之一。到今年9月,豆包大模型日均生成图片5000万张。

Others are asking
如何利用ai修改论文?
利用 AI 修改论文可以从以下几个方面入手: 1. 内容生成和辅助写作: Grammarly 可通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot 是基于 AI 的重写和摘要工具,能帮助精简和优化论文内容。 2. 文献管理和搜索: Zotero 结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar 作为 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 3. 研究和数据分析: Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于进行数据分析和可视化。 Knitro 用于数学建模和优化,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX 结合了自动化和模板,能高效处理论文格式和数学公式。 Overleaf 是在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin 是广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 在实际修改过程中,还可以参考以下经验: 像南瓜博士那样,将原文喂给相关的 AI 工具,如 code interpreter ,让其写入到 dataframe 里,保存成文件备用。 让 AI 从情节合理与连贯性角度给出意见,并根据其修改。 对于修改细节,可反复尝试,发现效果好的 prompt ,如 Arthur 的结构化 prompt ,对于改得不好的地方进行简单纠正。 一轮修改完成后,可根据需要进行新一轮修改,调整修改的重点,如更强调字词和标点。 需要注意的是,使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具,同时要仔细甄别 AI 生成的内容,避免过度依赖。
2025-03-06
免费ai
以下是为您整理的关于免费 AI 的相关内容: 周鸿祎免费课 AI 系列第一讲: 周鸿祎认为在人工智能的技能和知识面前人人平等,学会人工智能是未来职业发展必备的基本能力。不懂人工智能可能会被淘汰。 免费课的关键词是免费、分享、科普、交流。 周鸿祎受李一舟启发,做免费科普课,分享 AI 知识,共同交流。课程会先从宏观开始,后面会宏观、微观结合,安排人工智能研究院的产品经理、技术专家配合讲解基本产品的使用方法等微观内容。 免费的 AI 理解论文服务: 对于计算机领域(尤其是人工智能话题),可以看看 https://www.aminer.cn/ ,该网站提供免费的 AI 理解论文服务(每篇论文只要处理一次便全站可看,成本很低)以及基础的 chat with paper 功能,多数论文都有免费的 PDF 下载链接。
2025-03-06
AI如何自动定制贴纸
以下是关于 AI 自动定制贴纸的相关信息: 扎克伯格在上周年度 Connect 会议上宣布推出集成在应用里的 AI 贴纸功能。此功能可以轻松地为聊天和故事生成自定义贴纸,使用 Llama 2 的技术和 Emu 图像生成基础模型,能够在几秒钟内将您的文本提示变成多个独特的高质量贴纸。 这项新功能将于下个月在 WhatsApp、Messenger、Instagram 和 Facebook Stories 中向部分英语用户推出。
2025-03-06
AI自动定制贴纸
以下是关于 AI 自动定制贴纸的相关信息: 扎克伯格在上周年度 Connect 会议上宣布推出集成在应用里的一系列 AI 功能,其中包括 AI 贴纸。该功能可以轻松地为聊天和故事生成自定义贴纸,使用 Llama 2 的技术和 Emu 图像生成基础模型,能够在几秒钟内将您的文本提示变成多个独特的高质量贴纸。这项新功能将于下个月在 WhatsApp、Messenger、Instagram 和 Facebook Stories 中向部分英语用户推出。
2025-03-06
什么是AI AGENT
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-03-06
教我如何使用剪辑视频ai
以下是使用剪辑视频 AI 的方法: 1. 准备视频内容: 先准备一段视频中播放的内容文字,内容可以是产品介绍、课程讲解、游戏攻略等。也可以利用 AI 生成这段文字。 2. 制作视频: 使用剪映 App 进行简单处理。电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。 在界面右侧将准备好的文字内容替换默认文本内容,这将为数字人提供语音播放的内容以及生成相对应的口型。 3. 视频转绘处理(使用 Topaz Video AI 插件): 解压对应文件,推荐使用绿色版。右键管理员运行 VideoAIportable.exe 文件。 导入处理好的视频,查看主界面,左边是原视频,右边是待处理视频,下面是对应的视频轨道。 右边部分是对视频处理的方式,预设部分包括放大视频、提升画质、提升帧率等。稳定 AI 模式选择完整帧,强度在 60 左右,抖动开启,次数选择 2 保持默认不变。 4. 配音处理: 把鼠标移动到每个视频片段的右下角的蓝色“+”号,点击或拖拽将片段添加到剪映编辑器的轨道里。 点击剪映电脑版最上面的菜单栏“音频”。 音频导入包括直接导入音频文件(如 MP3 格式),支持视频转音频,还可以通过复制抖音视频的分享链接来获取音乐。
2025-03-06
我是一个新手小白,帮构思一下关于如何学习AI的PPT .要求有包括豆包,AI数字人,KIMI,灵犀,如影,剪映,即梦等APP学习技术。都带上APP网址
以下是为您构思的关于如何学习 AI 的 PPT 大纲: 幻灯片 1:封面 标题:如何学习 AI 幻灯片 2:目录 1. AI 辅助 PPT 的原理和作用 2. 几款 PPT 生成工具(网站) 3. 相关 APP 介绍 幻灯片 3:AI 辅助 PPT 的原理和作用 1. 减轻排版工作的压力 2. 生成打底的内容,减轻人写内容的工作 3. 文章生成 PPT,让 AI 帮忙摘要内容,生成大纲列表 4. 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容 5. 在特定场景下不用改直接用,如学生快速为小组展示配 PPT 幻灯片 4:AI 辅助 PPT 的流程 1. 用户输入 2. AI 输出 3. 排版 网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版 幻灯片 5:几款 PPT 生成工具(网站) 1. 讯飞智文:https://zhiwen.xfyun.cn/ (免费引导好) 2. Mindshow.fun :http://Mindshow.fun (Markdown 导入) 3. kimi.ai :http://kimi.ai (选 PPT 助手暂时免费效果好) 4. Tome.app :http://Tome.app (AI 配图效果好) 5. Chatppt.com :http://Chatppt.com (自动化程度高) 6. 百度文库:https://wenku.baidu.com (付费质量好) 幻灯片 6:相关 APP 介绍 1. 豆包 2. AI 数字人 3. KIMI 4. 灵犀 5. 如影 6. 剪映(图文成片,只需提供文案,自动配图配音) 7. 即梦 希望以上内容对您有所帮助!
2025-03-05
有没有路径可以围绕DS、豆包等大模型的检索结果做优化的路径
围绕 DS、豆包等大模型的检索结果做优化的路径包括以下方面: 首先,通过集成收集 AI 反馈(AIF)聊天模型完成情况,然后利用 GPT4(UltraFeedback)进行评分并二值化为偏好。其中,Step2AIF 在某种程度上是一种 selfplay,通过多模型 prompt 生成来进行 RL。在模型最终采用的 DPO 算法的 SFT 过程中,用于最终模型 SFT 所训练的 AIF 数据集与原始 pretraining 数据集在数据(tokens)序列组织构象上存在差异,这是一种 Synthetic Data 的路径,关键在于这种 Synthetic Data 与原始 Data 在特征与知识分布上的差异。 DPO 算法通俗来讲,当一个答案是好的答案时,模型要尽可能增大其被策略模型生成的概率;当一个答案是差的答案时,模型则需要尽可能降低其被策略模型生成的概率。 以上是在 RL×LLM 方面的一些探索,接下来需要将上述模型案例以及延展的思考进行沉淀,回归第一性原理进行更进一步的本质探寻,以找到两者之间隐含的共性、差异以及呈现当前技术发展路径与现状的必然性。
2025-03-04
豆包如何切换deepseekR1大模型
要切换到 DeepseekR1 大模型,您可以参考以下步骤: 1. 对于新闻播报自动化工作流: 首先,输入新闻链接,系统会自动提取核心内容。添加网页图片链接提取插件,获取网页里的图片。 接着,利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。 然后,使用链接读取节点提取文字内容,并在提取链接后面接上一个大模型节点,使用 DeepseekR1 模型生成有吸引力的口播内容。 注意,DeepseekR1 基础版本限额使用,可在专业版手动接入。手动接入时,先点击 https://www.volcengine.com/experience/ark?utm_term=202502dsinvite&ac=DSASUQY5&rc=A6NPZ83H 领取 375 万 R1 模型的 tokens(手机用户可扫描二维码),再到 https://www.volcengine.com/,根据相关截图自行接入推理点。为了后续批处理,需将输出格式设置为 Array<String>格式。 2. 对于飞书多维表格相关操作: 可参考教程“”。 例如,在制作【AI 书单】时,可把图书的封面图复制到多维表格里,AI 能自动识别【书名和作者】;用字段捷径【AI 搜索】找到豆瓣评分;用字段捷径【自定义 AI 自动填充】识别图书的内容概述、适用人群、推荐理由;用【信息提取】分别把主题、核心观点、故事梗概、适用人群、推荐理由提取出来。
2025-02-27
豆包,chatgpt算哪种类型的ai
ChatGPT 是由致力于 AGI(通用人工智能)的公司 OpenAI 研发的一款 AI 技术驱动的 NLP(自然语言处理)聊天工具。它于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM(大型语言模型)。 ChatGPT 是 AIGC(人工智能生成内容)技术的一个应用实例,形象比喻为通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。其英文解释为:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。它是美国 OpenAI 公司开发的一款基于大型语言模型的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。
2025-02-23
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
我在写小说,怎么让AI在写作时能很好地根据整体故事情节和上下文进行故事的展开和描写
以下是一些让 AI 在写作小说时能很好地根据整体故事情节和上下文进行故事展开和描写的方法: 1. 创作穿越故事的 Prompt 时,明确以下内容: 标题:“generate:小说的标题” 设置:“generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息” 主角:“generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述” 反派角色:“generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述” 冲突:“generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系” 对话:“generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者” 主题:“generate:小说中心主题,并说明如何在整个情节、角色和背景中展开” 基调:“generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明” 节奏:“generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明” 其它:“generate:任何额外的细节或对故事的要求,如特定的字数或题材限制” 根据上面的模板生成为特定题材小说填充内容,并分章节,生成小说的目录。 2. 接下来,让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。 3. 可以让 AI 以表格的形式输出细节描述。这样做有三个好处: 打破 AI 原本的叙事习惯,避免陈词滥调。 按编号做局部调整很容易,指哪改哪,别的内容都能够稳定保持不变。 确保内容都是具体的细节,避免整段输出时缩减导致丢光细节只有笼统介绍。 4. 把生成的表格依次复制粘贴,让 AI 照着写文章,偶尔根据需要给 AI 提供建议。 5. 注意小说大赛的要求,如最后的作品必须是 AI 直接吐出来的,不能有任何改动,不能超过规定字数等。如果需要修改,可能会遇到像 GPT4 记性不好或 Claude 改掉关键情节等问题。
2025-01-26
负责动力制造公司智能制造数字化转型的整体策划,请帮我完善一下
对于动力制造公司智能制造数字化转型的整体策划,以下是一些完善的建议: 首先,进行全面的现状评估。包括对现有生产流程、设备设施、信息化系统等方面的详细调研,明确当前存在的问题和瓶颈。 其次,制定明确的转型目标。例如,提高生产效率、降低成本、提升产品质量、增强供应链的灵活性等,并且将这些目标进行量化和细化。 然后,规划技术架构。确定所需的数字化技术,如工业物联网、大数据分析、人工智能、云计算等,并设计它们之间的集成方案。 接着,优化生产流程。通过数字化手段对生产流程进行重新设计和优化,消除不必要的环节,提高生产的流畅性和效率。 再者,加强人才培养。培养具备数字化思维和技能的员工队伍,包括技术人员和管理人员。 最后,建立有效的评估和持续改进机制。定期对转型效果进行评估,根据评估结果调整策略和措施,以确保转型的持续推进和目标的实现。 希望以上建议能对您有所帮助。
2025-01-17
请帮我做一个智能制造整体规划蓝图
很抱歉,目前知识库中没有关于智能制造整体规划蓝图的相关内容。但一般来说,智能制造整体规划蓝图需要考虑以下几个关键方面: 1. 生产流程优化:对现有生产流程进行详细分析,找出瓶颈和可优化的环节,引入自动化和智能化技术提高生产效率和质量。 2. 设备智能化升级:评估现有设备的智能化水平,逐步更新和升级设备,实现设备之间的互联互通和数据共享。 3. 数据管理与分析:建立完善的数据采集、存储和分析系统,挖掘数据中的潜在价值,为决策提供支持。 4. 人才培养与团队建设:培养具备智能制造知识和技能的人才,组建跨领域的团队来推动项目实施。 5. 供应链协同:加强与供应商和合作伙伴的协同,实现供应链的可视化和智能化管理,提高供应链的响应速度和灵活性。 6. 质量控制与追溯:建立智能化的质量检测和追溯体系,确保产品质量的稳定性和可追溯性。 以上只是一个初步的框架,具体的规划蓝图需要根据您企业的实际情况和需求进行深入调研和定制化设计。
2025-01-10
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
如何利用ai进行表现
以下是利用 AI 进行表现的一些方式和案例: 1. 在角色动画制作方面,如 Playhouse ,可以使用人工智能为 2D 或 3D 角色制作动画。输入文字,或打开相机并表演,无需再为 3D 角色进行绑定。生成 3D 资产,只需输入文字或上传图像,我们将其转换为 3D,并控制 3D 场景中的每个元素。前 5000 名注册用户可享受 1 个月的 Playhouse 独立计划。 2. 在 3D 场景引擎方面,Playbook 是一个基于扩散的 3D 场景引擎,利用 ComfyUI 进行图像和视频生成。它基于网络的工具和 Blender 插件,并提供 300 渲染积分。 3. 在 3D 模型生成方面,Tripo AI 是由 VAST 推出的生成式 3D 模型,可以在 8 秒内生成带纹理的 3D 网格模型,在 2 分钟内生成详细模型。此外,Tripo 还开发了自动绑定、动画和风格化功能,以使生成的模型更易于在流程中使用。Tripo API 与 ComfyUI 集成良好,可实现迭代和可控流程。Tripo AI 还拥有一个热门的 3D 创作者/开发者社区。Tripo 的最终目标是在即将到来的 3D 时代让每个人都成为超级创作者。1 个月的 Tripo 专业订阅。 4. 在剧本创作方面,SAGA 是第一款也是最好的剧本创作和故事板应用程序,由针对电影输出而精心调整的最新和最强大的生成式人工智能模型提供支持,包括 GPT 4、Claude 3.5 和 Luma Dream Machine。具有精心开发的故事、引人入胜的角色和精心策划的摄影的人工智能短片甚至音乐视频在比赛中表现更好。SAGA 为您提供最佳创意,让您在一个地方完成所有操作,无需购买一系列人工智能工具以及像 Final Draft 或 Storyboarder 这样的应用程序来将其整合在一起。1 个月的 Saga 高级订阅。 5. 在文旅宣传片创作方面,AI 离谱设工作流分享中,创作策略包括主题明确,聚焦文旅融合,展示地域文化多样性,融合现代科技,创新表现形式,讲好中国故事,传递正能量,以及鼓励互动与参与。通过这样的创作策略,“两会 AI 全国文旅宣传片”旨在通过巧妙运用 AIGC 技术手段展现中国文化旅游的魅力,同时强调文旅融合的重要性和前景,促进文化旅游行业的发展。 6. 在虚拟人物形象生成方面,Meta AI 可以从多人对话中语音中生成与对话相对应的逼真面部表情、完整身体和手势动作。这些生成的虚拟人物不仅在视觉上很逼真,而且能够准确地反映出对话中的手势和表情细节,如指点、手腕抖动、耸肩、微笑、嘲笑等。其工作原理包括数据集捕获、运动模型构建、面部运动生成、身体运动生成、虚拟人物渲染和结果展示等步骤。
2025-02-17
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
我想知道ai视频的如今的现状如何,商业市场表现怎么样
目前 AI 视频的现状和商业市场表现如下: 成本方面:AI 视频生成成本逐渐与非 AI 工作流成本齐平,并有望显著低于现有成本,持续降低推理成本数量级。 技术卡点:生成内容存在不可控性,如形象不一致、动作不流畅、表情不生动、复杂提示词难以完全实现,以及时长增加时出现不符合物理规律的动作等问题。 应用场景: 短视频:短剧/TVC 生产流程可实现 AI 工具全替代。 长视频:电影/电视剧/动画开始渗透,AI 技术尚停留在工具层面,对工作流实现部分替代、降低成本,暂时无法提供全流程全 AI 替代传统工作方式的解决方案。总体而言,越接近综合性思考、策划层面越难,具体工作越容易被取代。 市场前景:市场前景广阔,5 年内有望达千亿级市场。国内影视市场规模在 2023 年约可达 3835 亿元,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 受众群体: 专业创作者(艺术家、影视人等):AI 生成能为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向,一些平台为创作者提供免费支持。 自媒体、非专业创作者:有着具体明确的视频剪辑痛点,如寻找素材、版权问题、不同平台内容形式转换成本高等,部分产品致力于解决这些问题。 企业客户:对于资金不足的小企业、非盈利机构,AI 视频生成可大幅缩减成本。
2025-01-15
在生成刺绣图片上表现优秀的AI工具
以下是在生成刺绣图片方面可能表现优秀的 AI 工具,以及一些相关的图生图 AI 工具供您参考: 图生图 AI 工具: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,将上传的照片转换为芭比风格,效果超级好。 不过目前尚未有专门针对生成刺绣图片的特定 AI 工具。这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出,但仍有一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。
2024-11-15
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30