直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

你是基于什么网络模型构建的?

回答

以下是为您提供的关于网络模型的相关信息:

  • 在强化学习中,DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,由于游戏不是很复杂所以选用简单的两层网络结构。
  • 对于人工智能是否能预测会发生什么的问题,以一个非常简单的案例为例,使用“蓝色曲线”数据训练的神经网络在复制其训练数据方面做得不错,但在“预测未来”时基本上失败了。
  • 关于安装 WebUI 中的相关模型,有多种模型分别存储在不同的目录中,如 aesthetic_embeddings(美学嵌入模型)、Codeformer、deepbooru(深度图库标签分类模型)等。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

入门指南:强化学习

|Num|Observation|Min|Max||-|-|-|-||0|Cart位置|-4.8|4.8||1|Cart速度|-Inf|Inf||2|Pole角度|~ -0.418 rad(-24°)|~ 0.418 rad(24°)||3|Pole角速度|-Inf|Inf|行动也只有两个,向左或向右,所以我们的模型也可以构建的很简单。下面来看看具体的代码,代码也是用chatgpt生成的,我稍微改了一下。我们的DQN的网络模型采用一层128个神经元的全连接并以ReLU作为激活函数,由于游戏不是很复杂所以选用简单的两层网络结构就行了:我们还需要一个缓存区来存放从环境中采样的数据:然后就是我们的训练函数,批量从缓存区获取数据,使用DQN算法进行训练:最后就是我们的主循环函数了,在每个episode中,我们选择一个动作(使用ε-greedy策略),执行该动作,并将结果存储在replay buffer中:训练完之后使用保存好的model.pth参数,就可以实际使用起来了:

沃尔夫勒姆:人工智能能解决科学问题吗?

Yes,there can be a lot of flexibility in this model.But one can’t have a truly “model-less model”.Perhaps the AI is based on a huge neural network,with billions of numerical parameters that can get tweaked.Perhaps even the architecture of the network can change.But the whole neural net setup inevitably defines an ultimate underlying model.是的,这个模型可以有很大的灵活性。但不可能有一个真正的“无模型模型”。也许人工智能是基于一个巨大的神经网络,有数十亿个可以调整的数值参数。也许甚至网络的架构也可以改变。但整个神经网络设置不可避免地定义了一个最终的底层模型。Let’s look at a very simple case.Let’s imagine our “data” is the blue curve here—perhaps representing the motion of a weight suspended on a spring—and that the “physics” tells us it continues with the red curve:让我们看一个非常简单的案例。让我们想象我们的“数据”是这里的蓝色曲线——也许代表悬挂在弹簧上的重物的运动——并且“物理学”告诉我们它继续是红色曲线:Now let’s take a very simple neural net现在让我们来看一个非常简单的神经网络and let’s train it using the “blue curve” data above to get a network with a certain collection of weights:让我们使用上面的“蓝色曲线”数据来训练它,以获得具有特定权重集合的网络:Now let’s apply this trained network to reproduce our original data and extend it:现在让我们应用这个经过训练的网络来重现我们的原始数据并扩展它:And what we see is that the network does a decent job of reproducing the data it was trained on,but when it comes to “predicting the future” it basically fails.我们看到的是,网络在复制其训练数据方面做得不错,但当涉及到“预测未来”时,它基本上失败了。

安装WebUI(工具篇)

├── 📄 config.json ├── 📄 environment-wsl2.yaml # Windows Subsystem for Linux的环境配置├── 📁 embeddings #存储embedding模型的目录│ ├── 📄 place textual inversion embeddings here.txt ├── 📁 extensions #插件目录│ ├── 📄 put extensions here.txt │ └── 📁 stable-diffusion-webui-localization-zh_CN ├── 📄 launch.py ├── 📄 LICENSE.txt ├── 📁 models #存储各类模型的目录│ ├── 📁 aesthetic_embeddings #美学嵌入模型│ ├── 📁 Codeformer │ ├── 📁 deepbooru #深度图库标签分类模型│ ├── 📁 ESRGAN #增强超分辨率生成对抗网络模型│ ├── 📁 GFPGAN #基于GAN的人脸修复模型│ ├── 📁 hypernetworks #超网络模型│ ├── 📁 LDSR #轻量残差网络模型│ ├── 📁 Lora # Lora模型│ ├── 📁 ScuNET │ ├── 📁 Stable-diffusion #稳定扩散模型│ ├── 📁 SwinIR #轻量级基于Swin Transformer的增强超分辨率模型│ ├── 📁 VAE #变分自编码器模型│ └── 📁 VAE-approx #变分自编码器的近似计算模型├── 📁 outputs #存储各类输出结果的目录│ ├── 📁 img2img-grids #由图生图模型生成的网格图(2x2)│ ├── 📁 img2img-images #由图生图模型生成的图像│ ├── 📁 extras-images #额外的生成图像│ ├── 📁

其他人在问
现在有哪些给非设计师快速构建界面的ai工具
以下是一些可以帮助非设计师快速构建界面的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可自动生成序列图等帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 目前用于产品原型设计的 AIGC 工具包括: 1. UIzard:利用 AI 技术生成用户界面。 2. Figma:基于云的设计工具,提供自动布局和组件库,社区有 AI 插件。 3. Sketch:流行的矢量图形设计工具,插件系统中有利用 AI 技术辅助设计的插件。 在游戏中,从文本提示生成 2D 图像的工具如 Midjourney、Stable Diffusion 和 DallE 2 已广泛应用。生成性 AI 工具在概念艺术方面能帮助非艺术家快速探索概念和想法,一些工作室也尝试用其制作游戏内的生产艺术品。例如,可参考 Albert Bozesan 提供的使用 Stable Diffusion 创建游戏内 2D 资源的教程。
2024-12-19
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
如何构建自己业务系统的AI Agent
构建自己业务系统的 AI Agent 可以参考以下内容: AI Agent 简介:AI Agent 也称为 AI 智能体,是拥有各项能力来帮助我们做特定事情的“打工人”。它包含自己的知识库、工作流,还能调用外部工具,并结合大模型的自然语言理解能力完成复杂工作。其出现是为了解决如胡编乱造、时效性、无法满足个性化需求等问题,以结合业务场景和需求解决自身问题。 扣子 Coze:字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可发布到各种社交平台和通讯软件上。 构建步骤:通过简单 3 步创建智能体,首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像。 工作流相关:构建稳定可用的 AI Agent 是不断调试和迭代的过程。通常从当前性能最强的 LLM 着手,先用单条 Prompt 或 Prompt Chain 测试任务执行质量和稳定性,再根据实际情况和最终使用的 LLM 逐步拆解子任务。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可预见到需要拆解为工作流。此外,若涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流调用相应插件。 关于只用一段 Prompt 的 Agent:也算 AI Agent,详见
2024-12-09
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
ai模型种类
以下是一些常见的 AI 模型: OpenAI 模型: GPT4 Beta:一组改进 GPT3.5 的模型,可以理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,可以理解并生成自然语言或代码。 DALL·E Beta:可以在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper Beta:可以将音频转换为文本的模型。 Embeddings:一组可以将文本转换为数字形式的模型。 Codex Limited Beta:一组可以理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:可以检测文本是否敏感或不安全的微调模型。 GPT3:一组可以理解和生成自然语言的模型。 智谱·AI 模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。 WebGLM2B MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%。 MathGLM500M MathGLM100M MathGLM10M MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM。 ProductHunt 2023 年度最佳产品榜单中的模型: GPT4(免费可用):与人类水平相当的 LLM,是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型(接受图像和文本输入,输出文本),在各种专业和学术基准测试中表现出与人类相当的水平。 Midjourney v5(免费):最新、最先进的模型,具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃。 Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。
2024-12-19
大模型成本趋势
大模型的成本趋势如下: 目前存在唱衰大模型的观点,认为其难以找到可商用场景,部分功能存在幻觉问题,且算力成本高,导致商业模式难以形成闭环。 但也有观点认为,关于算力成本,已有许多解决方案,如模型蒸馏、苹果的端云方案等,今年内算力成本问题有望不再是难题。 对于不同规模的模型,小模型在某些特定应用中有其优势且足够好用,但大模型会解锁新的有价值的应用程序。不过并非所有应用都能证明大模型的成本合理。 在多模态大模型方面,随着数据集和模型规模扩大,传统模型带来巨大计算量。研究人员利用现成训练好的单模态基础模型,可减少多模态训练费用、提升效率。不同模态模型分开训练,如何实现模态连接和协同推理是核心挑战。
2024-12-19
大模型成本
大模型的成本主要通过 token 数量来计算。普通常见单词使用一个 token,不常见单词可能被拆分从而消耗更多 token。一般 300 个单词约需 400 个 token,token 消耗通常比单词数多出 33%左右。 以 GPT 为例,一个成年人一小时阅读约 30000 个词,按转化率约需 40000 个 token。GPT3.5 每 1000 个 token 需 0.002 美元,供成年人阅读使用 1 小时消耗 0.08 美元(8 美分);GPT4 则需 2.4 美元。 在搭建 AI 微信聊天机器人方面,极简未来平台的费用取决于使用的大模型和调用次数,按 Token 数量计费。如使用 GPT3.5 模型每次对话大约消耗不到 20 积分,平台有签到免费领积分福利,也可充值,19 元可兑换 10000 积分,能满足日常使用好几个月。
2024-12-19
语音对话哪个AI模型比较强?
以下是一些在语音对话方面表现较强的 AI 模型: 1. 智谱·AI 的 ChatGLM26B:这是第二代 ChatGLM 对话模型,相比一代模型性能更强,基座模型的上下文长度从 2k 扩展到 32k,在对话阶段使用 8K 的上下文长度训练,推理速度相比初代提升 42%。此外还有 ChatGLM26Bint4 这一 int4 量化版本,具备最小 5.1GB 显存即可运行,在 INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 2. Hertzdev 开源会话音频模型:具有实时对话、双向交流无需等待对方讲完,超低延迟(120 毫秒),高效压缩(占用带宽少、音质优秀、支持长对话生成)等特点。 在游戏中的语音对话方面,生成式 AI 对话使得角色可以说任何话,完全响应玩家正在做的事情。结合更智能的 NPC AI 模型,完全对玩家作出反应的游戏将很快成为现实。例如,使用与玩家的虚拟形象匹配的生成声音可以维持角色扮演的幻觉,还可以控制声音的细微差别,以及实现对话的本地化。像 Deepdub 这样的公司专注于这个特定的领域。
2024-12-19
怎么训练模型进行标题改写
训练模型进行标题改写可以参考以下方法: Sora 模型: 对于视频标题改写,首先训练一个能够为视频生成详细描述的视频标题生成器。可利用 CoCa 架构进行视频标题生成,如 VideoCoCa,通过取视频的多个帧并将每个帧输入到图像编码器,产生的帧令牌嵌入被展平并连接成一个长序列的视频表示,再由生成性池化器和对比性池化器处理,与对比损失和标题生成损失一起联合训练。构建视频标题生成器的其他替代方法包括 mPLUG2、GIT、FrozenBiLM 等。为确保用户提示与训练数据中的描述性标题格式一致,执行额外的提示扩展步骤,用 GPT4V 将用户输入扩展为详细的描述性提示。 对于语言指令跟随,通过开发一个能够生成长而详细标题的字幕器,然后用这些标题来训练模型。但收集用于训练此类字幕器的数据的过程未知,且可能需要大量劳动。 DALL·E 3 模型:通过用详细、描述性的标题重新标注现有图像来解决指令遵循问题。首先训练一个图像标题生成器,这是一个视觉语言模型,用于生成精确和描述性的图像标题。然后,使用标题生成器生成的描述性图像标题来微调文本到图像模型。具体来说,DALL·E 3 遵循对比标题生成器(CoCa)的方法,联合训练一个图像标题生成器,该生成器具有 CLIP 架构和一个语言模型目标。进一步在详细描述图像的主要对象、周围环境、背景、文本、风格和颜色方面进行微调后,图像标题生成器能够为图像生成详细的描述性标题。文本到图像模型的训练数据集是由图像标题生成器生成的重新标注数据集和真实人类编写的数据混合而成,通过上采样来解决实际用户提示与训练数据中的描述性图像描述之间的不匹配问题。 关于 Midjourney 的训练 prompt: The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pretrained autoencoders. Training a diffusion model on such a representation makes it possible to achieve an optimal point between complexity reduction and detail preservation,significantly improving visual fidelity.Introducing a cross attention layer to the model architecture turns the diffusion model into a powerful and flexible generator for generally conditioned inputs such as text and bounding boxes,enabling highresolution convolutionbased synthesis. Midjourney 会例行发布新的模型版本以提高效率、连贯性和质量。最新的模型是默认的,但可以使用 version 或 v 参数或通过 /settings 命令选择其他模型版本。不同的模型在不同类型的图像上表现出色。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。使用此模型,可在 prompt 末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持诸如 tile 等高级功能。其新特点包括更广泛的风格范围、对提示更敏感、更高的图像质量、更详细的图像、细节更可能正确以及更少不需要的文本。
2024-12-19
GAN生成对抗网络
GAN 生成对抗网络是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。它具有以下特点和应用: 特点: 能够生成视觉逼真度高的视频。 控制难度大、时序建模较弱。 与 VAE 变分自编码器、Transformer 自注意力机制等相比,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 应用: 可以帮助神经网络用更少的数据进行学习,生成更多的合成图像。 有助于创建图像,还可以创建现实世界的软件模拟,如 Nvidia 大量采用这种技术来增强其现实模拟系统。 同时,当前端到端视频生成仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。针对这些问题,可使用渐进生成、增强时序一致性的模型等方法,以及上述的补帧算法、视频完善策略来在一定程度上缓解。
2024-12-18
我是一名销售,我需要一个AI工具,可以帮助我分析公开网络上客户最近一年的资讯,帮助我更好的了解他,你有什么AI工具可以推荐
以下是为您推荐的可以帮助分析公开网络上客户最近一年资讯的 AI 工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成潜在客户评分,还具有自动化功能,可执行日常或耗时任务。 2. Clari:专门从事智能收入运营的软件,能统一各种来源的数据并以易于理解的方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时的研究。 实际上还有许多其他的 AI 销售工具可以根据您的具体需求选择使用。
2024-12-11
生成对抗网络 GAN
生成对抗网络(GAN)是一种在 AI 领域非常重要的模型。 GAN 是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。其中一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。 GAN 在图像生成领域极为引人注目,例如您可能已经听说过的“DeepFake”便是基于这一技术。同时,GAN 也可用于生成视觉逼真度高的视频,但存在控制难度大、时序建模较弱的问题。此外,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 GAN 诞生于 2014 年,是 Deep Learning 领域的重要里程碑,它可以帮助神经网络用更少的数据进行学习,生成更多的合成图像,然后用来识别和创建更好的神经网络。GAN 的创造者 Ian Goodfellow 是在蒙特利尔的一个酒吧里想出这个主意的,它由两个神经网络玩着猫捉老鼠的游戏,一个创造出看起来像真实图像的假图像,而另一个则决定它们是否是真的。GAN 不仅有助于创建图像,还可以创建现实世界的软件模拟,Nvidia 就大量采用这种技术来增强他的现实模拟系统。 相关的学习资源包括: 课程地址:https://www.cloudskillsboost.google/course_templates/541 视频学习:https://youtu.be/J0AuVBxzui0
2024-12-11
将容器内部的网络端口映射到本地主机是什么意思
将容器内部的网络端口映射到本地主机,以 Docker 中安装 Portainer 为例,如“p 9001:9000”这一命令,意味着将容器内的 9000 端口与本地主机(宿主机)的 9001 端口进行关联。这样做的目的是让 Portainer 能够通过本地主机的 9001 端口提供 Web 访问界面。在默认情况下,外部无法直接访问阿里云的机器,可能需要打开安全策略,如加入 9001 端口的访问,之后就可以在自己的电脑上通过浏览器进行访问。
2024-12-02
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14