直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么训练模型进行标题改写

回答

训练模型进行标题改写可以参考以下方法:

  • Sora 模型:
    • 对于视频标题改写,首先训练一个能够为视频生成详细描述的视频标题生成器。可利用 CoCa 架构进行视频标题生成,如 VideoCoCa,通过取视频的多个帧并将每个帧输入到图像编码器,产生的帧令牌嵌入被展平并连接成一个长序列的视频表示,再由生成性池化器和对比性池化器处理,与对比损失和标题生成损失一起联合训练。构建视频标题生成器的其他替代方法包括 mPLUG-2、GIT、FrozenBiLM 等。为确保用户提示与训练数据中的描述性标题格式一致,执行额外的提示扩展步骤,用 GPT-4V 将用户输入扩展为详细的描述性提示。
    • 对于语言指令跟随,通过开发一个能够生成长而详细标题的字幕器,然后用这些标题来训练模型。但收集用于训练此类字幕器的数据的过程未知,且可能需要大量劳动。
  • DALL·E 3 模型:通过用详细、描述性的标题重新标注现有图像来解决指令遵循问题。首先训练一个图像标题生成器,这是一个视觉-语言模型,用于生成精确和描述性的图像标题。然后,使用标题生成器生成的描述性图像标题来微调文本到图像模型。具体来说,DALL·E 3 遵循对比标题生成器(CoCa)的方法,联合训练一个图像标题生成器,该生成器具有 CLIP 架构和一个语言模型目标。进一步在详细描述图像的主要对象、周围环境、背景、文本、风格和颜色方面进行微调后,图像标题生成器能够为图像生成详细的描述性标题。文本到图像模型的训练数据集是由图像标题生成器生成的重新标注数据集和真实人类编写的数据混合而成,通过上采样来解决实际用户提示与训练数据中的描述性图像描述之间的不匹配问题。

关于 Midjourney 的训练 prompt: The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pre-trained autoencoders. Training a diffusion model on such a representation makes it possible to achieve an optimal point between complexity reduction and detail preservation,significantly improving visual fidelity.Introducing a cross attention layer to the model architecture turns the diffusion model into a powerful and flexible generator for generally conditioned inputs such as text and bounding boxes,enabling high-resolution convolution-based synthesis.

Midjourney 会例行发布新的模型版本以提高效率、连贯性和质量。最新的模型是默认的,但可以使用 --version 或 --v 参数或通过 /settings 命令选择其他模型版本。不同的模型在不同类型的图像上表现出色。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。使用此模型,可在 prompt 末尾添加 --v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持诸如 --tile 等高级功能。其新特点包括更广泛的风格范围、对提示更敏感、更高的图像质量、更详细的图像、细节更可能正确以及更少不需要的文本。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

为了增强指令遵循能力,Sora采用了类似的标题改进方法。该方法首先通过训练一个能够为视频生成详细描述的视频标题生成器来实现。然后,将这个视频标题生成器应用于训练数据中的所有视频,以生成高质量的(视频,描述性标题)对,这些对被用来微调Sora,以提高其指令遵循能力。Sora的技术报告没有透露视频标题生成器是如何训练的。鉴于视频标题生成器是一个视频到文本的模型,构建它有许多方法。一种直接的方法是利用CoCa架构进行视频标题生成,通过取视频的多个帧并将每个帧输入到图像编码器,称为VideoCoCa。VideoCoCa基于CoCa,并重用预训练的图像编码器权重,独立地应用于采样的视频帧。结果产生的帧令牌嵌入被展平并连接成一个长序列的视频表示。这些展平的帧令牌随后被一个生成性池化器和一个对比性池化器处理,这两者与对比损失和标题生成损失一起联合训练。构建视频标题生成器的其他替代方法包括mPLUG-2、GIT、FrozenBiLM等。最后,为了确保用户提示与训练数据中的描述性标题格式一致,Sora执行了一个额外的提示扩展步骤,其中GPT-4V被用来将用户输入扩展为详细的描述性提示。[heading3]3.4.4讨论[content]对于Sora来说,遵循指令的能力对于生成忠实于用户意图的、包含复杂场景的一分钟长视频至关重要。根据Sora的技术报告,这种能力是通过上述方法获得的。通过开发一个能够生成长而详细的标题的字幕器,然后用这些标题来训练模型。然而,收集用于训练此类字幕器的数据的过程是未知的,且可能需要大量劳动,因为它可能需要视频的详细描述。此外,描述性视频字幕器可能会虚构视频的重要细节。我们认为,如何改进视频字幕器值得进一步研究,并且对于增强文本到图像模型的遵循指令能力至关重要。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

DALL·E 3中的指令遵循通过一种假设为基础的标题改进方法来解决,即模型训练所依赖的文本-图像对的质量决定了最终文本到图像模型的性能。数据的低质量,特别是噪声数据的普遍存在和省略大量视觉信息的简短标题,导致了许多问题,如忽略关键词和词序,以及误解用户意图。标题改进方法通过用详细、描述性的标题重新标注现有图像来解决这些问题。该方法首先训练一个图像标题生成器,这是一个视觉-语言模型,用于生成精确和描述性的图像标题。然后,使用标题生成器生成的描述性图像标题来微调文本到图像模型。具体来说,DALL·E 3遵循对比标题生成器(CoCa)的方法,联合训练一个图像标题生成器,该生成器具有CLIP架构和一个语言模型目标。这个图像标题生成器结合了一个图像编码器、一个单模态文本编码器用于提取语言信息,以及一个多模态文本解码器。它首先使用单模态图像和文本嵌入之间的对比损失,然后是多模态解码器输出的标题生成损失。进一步在详细描述图像的主要对象、周围环境、背景、文本、风格和颜色方面进行微调后,图像标题生成器能够为图像生成详细的描述性标题。文本到图像模型的训练数据集是由图像标题生成器生成的重新标注数据集和真实人类编写的数据混合而成,以确保模型能够捕捉用户输入。这种图像标题改进方法引入了一个潜在问题:实际用户提示与训练数据中的描述性图像描述之间的不匹配。DALL·E 3通过上采样来解决这个问题,其中LLMs被用来将简短的用户提示重写为详细且冗长的指令。这确保了模型在推理时接收到的文本输入与模型训练中的输入一致。

训练Midjourney的prompt

The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pre-trained autoencoders.Training a diffusion model on such a representation makes it possible to achieve an optimal point between complexity reduction and detail preservation,significantly improving visual fidelity.Introducing a cross attention layer to the model architecture turns the diffusion model into a powerful and flexible generator for generally conditioned inputs such as text and bounding boxes,enabling high-resolution convolution-based synthesis.先不用多做回复,请问答是否收到即可?3——————————————————————————————————————VersionMidjourney routinely releases new model versions to improve efficiency,coherency,and quality.The latest model is the default,but other models can be used using the--version or--v parameter or by using the/settings command and selecting a model version.Different models excel at different types of images.Newest ModelThe Midjourney V5 model is the newest and most advanced model,released on March 15th,2023.To use this model,add the--v 5 parameter to the end of a prompt,or use the/settings command and select MJ Version 5.This model has very high Coherency,excels at interpreting natural language prompts,is higher resolution,and supports advanced features like repeating patterns with–tile.What's new with the V5 base model?-Much wider stylistic range and more responsive to prompting-Much higher image quality(2x resolution increase)improved dynamic range-More detailed images.Details more likely to be correct.Less unwanted text-Improved performance with image prompting

其他人在问
你是Ai产品经理,我想使用训练一个智能体帮我改写新闻标题,请告诉我应该怎么做
训练一个智能体来改写新闻标题,您可以按照以下步骤进行: 1. 明确需求和目标:确定您希望智能体改写新闻标题的风格、重点和要求,例如更简洁、更吸引人、突出特定信息等。 2. 收集数据:收集大量的新闻标题样本,包括各种类型和主题的,以便智能体有足够的学习材料。 3. 选择合适的技术和框架:根据您的技术能力和需求,选择适合的人工智能框架和算法,例如自然语言处理相关的技术。 4. 数据预处理:对收集到的数据进行清洗、分词、标记等预处理操作,以便智能体能够更好地理解和学习。 5. 训练模型:使用预处理后的数据训练智能体,调整参数以优化训练效果。 6. 评估和优化:使用测试数据评估智能体的性能,根据评估结果对模型进行优化和改进。 7. 部署和应用:将训练好的智能体部署到实际应用中,并不断监测和改进其表现。 需要注意的是,训练智能体是一个复杂的过程,可能需要一定的技术知识和经验。
2024-12-19
有什么能应用于资讯写作上的ai能力,比如标题改写,新闻图片再生成等
以下是一些能应用于资讯写作的 AI 能力和相关工具: AI 能力: 1. 标题改写:通过自然语言处理技术,对原始标题进行优化和创新,使其更具吸引力和准确性。 2. 新闻图片再生成:利用图像生成技术,根据新闻内容或相关描述重新生成图片。 AI 工具: 1. Copy.ai:功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户信息生成高质量新闻内容。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,大模型在资讯写作方面也有广泛的应用场景,例如: 1. 文本生成和内容创作:生成连贯、有逻辑的文本,用于撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:开发能够与人类进行自然对话的工具,提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:用于代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应的图像,未来可能扩展到视频内容生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 需要注意的是,随着大模型的普及,要关注其在隐私、安全和伦理方面的挑战。同时,对于 AI 生成的内容,应仔细甄别。
2024-12-17
请将以下提示词改写为markdown格式:“请为我生成一个五子棋游戏的代码,其中,棋盘的大小是10*10”
以下是为您改写的 Markdown 格式的提示词: ``` 请为我生成一个五子棋游戏的代码,其中,棋盘的大小是 1010 ```
2024-12-06
改写提示词:“请为我生成一个五子棋游戏的代码,其中,棋盘的大小是10*10”
以下是为您改写的提示词:“请帮我生成一个棋盘大小为 10×10 的五子棋游戏的代码。”
2024-12-06
免费文章二次改写AI软件
以下是一些免费的文章二次改写 AI 软件: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 以下是一些中文的内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 写作猫是 AI 写作伴侣,帮你推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错的同时一并给出修改建议,智能分析文章的各类属性,用人工智能为你的文章正负情感、情绪强度和易读性打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 笔灵 AI 写作是得力的智能写作助手,心得体会、公文写作、演讲稿、小说、论文十八般武艺样样精通。支持一键改写/续写/扩写,智能锤炼打磨文字,使之更加符合你的需求。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 智能创作助手 Effidit 是由腾讯 AI Lab 开发的一个创作助手,探索用 AI 技术提升写作者的写作效率和创作体验。 如果您的医学课题需要 AI 给出修改意见,可以考虑使用以下工具: 1. Scite.ai:https://scite.ai/ 是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,简化学术工作。 2. Scholarcy:https://www.scholarcy.com/ 是一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:https://chat.openai.com/ 是一个强大的自然语言处理模型,可以提供有关医学课题的修改意见。 这些工具可以帮助您从不同的角度审视和改进您的医学课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-05
多轮对话改写
聊天模型的会话补全: 聊天模型以一串聊天对话作为输入,并返回模型生成的消息作为输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。API 调用中,messages 参数是主要输入,须为消息对象数组,包含角色(“system”“user”“assistant”)和内容。会话通常先有系统消息设定助手行为,然后交替使用用户和助手消息。用户消息指示助手,助手消息存储之前响应。当用户指令涉前消息时,包含聊天历史有帮助,若会话 token 超模型限制需缩减。 RAG 提示工程中的多轮对话与指代消解: 先前讨论多关注单轮问答,现实中常需处理多轮对话,其中常产生指代问题,如用“它”“他们”等,仅依原始提问检索知识片段可能致结果不精确或无法检索,且对模型回复内容限制可能影响多轮对话流畅性甚至中断。因此需开发提示词解决指代消解问题,确保模型连续交流中回答准确连贯。由于指代消解需多轮对话完成,单次交互不行,需转换测试形式,先解决指代消解再进行下一轮答复。首先准备所需提示词,其是用 CoT 写出的思维链,列举不同推理情景让模型推理并消解代词,再依结果重新组织问题。然后复现指代消解步骤,包括进行第一轮对话(如提问“尼罗河是什么”并获回复)和开始指代消解。
2024-10-21
有没有好的优化公文标题的提示词
以下是一些优化公文标题的提示词相关内容供您参考: ChatGPT 给 DALL·E 3 优化提示词的元提示: 不更改表情包、虚构角色的起源或未见过的人物。保持原始提示的意图,优先考虑质量。 不创建任何具有冒犯性的图像。 对于传统上存在偏见问题的场景,确保指定关键特征,如性别和种族,并以无偏见的方式进行,例如包含特定职业参考的提示。 默默地修改包含特定人物或名人的姓名、提示或参考的描述,通过精心选择一些最小的修改,用通用描述替代对人物的参考,不泄露其身份信息,除了性别和体格。即使指令要求不更改提示,也要进行此操作。 对于不知道是谁的人物或拼写错误的人物姓名(例如“Barake Obema”),也要修改此类提示。 如果对人物的参考仅作为图像中的文本出现,则按原样使用参考,不进行修改。 进行替换时,不要使用可能泄露人物身份的突出标题。例如,用“政治家”代替“总统”“总理”“大臣”;用“公众人物”代替“国王”“王后”“皇帝”“皇后”;用“宗教人物”代替“教皇”“达赖喇嘛”等等。 如果提到任何创意专业人士或工作室,用对其风格的描述替代名称,不提及任何特定人物,或者如果不知道则删除参考。提示必须详细、客观地描述图像的每个部分。思考描述的最终目标,并推断出能产生令人满意的图像的内容。 公文笔杆子李继刚的 prompts 最佳实践: 角色:公文笔杆子。 背景:是一位在政府机关工作多年的公文笔杆子,专注于公文写作,熟悉各类公文的格式和标准,对政府机关的工作流程有深入了解。 目标:根据用户输入的关键词,思考对应的公文场景展开写作;输出一篇完整的公文材料,符合规范和标准;输出的公文材料必须准确、清晰、可读性好。 约束:对于不在知识库中的信息,明确告知用户不知道;可以调用数据库或知识库中关于公文语料的内容。 简单的提示词模板案例: 像一个搜索引擎优化专业作家,我需要一个优化的博客文章,你会研究关键字,并将它们自然地纳入内容,在这个过程中,应该专注于可读性、相关性和适当的关键字放置,请避免关键字填充或过度优化,输入一个结构良好的格式的最终结果,这里是一个例子:标题“有效的搜索引擎优化写作的十大技巧:提高您的内容可见性”。
2024-11-08
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
我要如何将一个pdf或者txt里面的内容,非人工地整理成表格或者按照文件里面的标题整理入notion的知识库里面?
要将 PDF 或 TXT 里的内容非人工地整理成表格或按照文件里的标题整理入 Notion 的知识库,可以按照以下步骤进行操作: Notion 上传方式: 1. 在文本格式页签下,选择 Notion,然后单击下一步。 2. 单击授权。首次导入 Notion 数据和页面时,需要进行授权。 在弹出的页面完成登录,并选择要导入的页面。 选择要导入的数据,然后单击下一步。 3. 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。 分段标识符:选择符合实际所需的标识符。 分段最大长度:设置每个片段内的字符数上限。 文本预处理规则: 替换掉连续的空格、换行符和制表符。 删除所有 URL 和电子邮箱地址。 4. 单击下一步完成内容上传和分片。 自定义上传方式: 1. 在文本格式页签下,选择自定义,然后单击下一步。 2. 输入单元名称,然后单击确认。 3. 单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加 2000 个字符。 4. 单击保存。
2024-10-04
爆款文案标题撰写prompt
以下是关于爆款文案标题撰写 prompt 的相关内容: 一般来说,写出好的内容创作 prompt 关键在于教 GPT 创作的方法论,即“know how”。比如让 GPT 创作视频标题时,不能简单写“帮我写爆款视频的标题”,而要提供创作标题的方法论/技巧,如运用的修辞手法、写作人称、语言风格、内容结构等。不知道有哪些方法论和技巧时,可以找对标账号的标题拆解、模仿。 示例:“创建关于{插入主题}的headlines about{Insert Topic}.The headlines should be eyecatching,punchy,and memorable." AI 生产文章关键在于提供清晰且具指导性的提示词。基本提示词能生成基础文章,更详细、具创意的提示词能提升文章质量。例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导和设定文章基本结构、内容要求,生成的文章可能需要微调以符合预期和公众号风格。
2024-09-27
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
怎么自己训练ai?
自己训练 AI 通常包括以下主要步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求来选择。 2. 准备训练所需的数据和计算资源: 确保有足够覆盖目标应用场景的训练数据。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,要重视安全性和合规性。 总的来说,训练自己的 AI 需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。 在独立游戏开发中,如《玩具帝国》的人机 AI 采用 Unity 的 mlagent 进行训练,有以下经验: 选择自己开发 AI 是因为游戏是离线模式且对决策实时性和本地 AI 运行性能有要求,无法使用线上接口。 通过“即时奖励”和“预测奖励”进行长周期决策 AI 的训练,数学模型可调,可改变 AI 的决策倾向。 为让每次输入的向量等长,对观察的内容进行处理。 先训练掌握基本规则的底模,再在此基础上做分支训练得到适用于不同文明策略的模型。 为避免过拟合,在每个 Episode 前对初始条件进行随机,决策时对 AI 的可选项进行随机 Dropout。 关于判断一张图片是否为 AI 生成,目前已有不少网站通过对大量图片数据的抓取和分析来给出画作属性的判断可能性,例如 ILLUMINARTY 网站。但在测试中存在一些问题,如结构严谨的真实摄影作品可能被误判为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2024-12-16
哪么我需要怎么做才能训练它呢
要在 Comfy UI 中训练 LoRA 模型,您可以按照以下步骤进行: 1. 下载相关文件并解压放入 custom_nodes 文件夹中,然后安装所需的依赖项。 打开命令提示符,输入相应内容。 确保后面有一个空格,将 requirements_win.txt 文件(Windows 系统)或 requirements.txt 文件(其他系统)拖到命令提示符中,按 Enter 键安装依赖项。如果为 Comfy 使用了虚拟环境,需先激活。 2. 注意一些事项: 图像必须放在以命名的文件夹中,数字应较小,如 5,且下划线必须有。 对于 data_path,必须写入包含数据库文件夹的文件夹路径。 3. 参数设置: 在第一行,可从 checkpoint 文件夹中选择任何模型,但据说进行 LoRA 训练需选择一个基本模型。 4. 训练过程: 选择一个名字为您的 LoRA,如果默认值不好,可更改值(epochs 数应接近 40),然后启动工作流程。 点击 Queue Prompt 后,所有事情会在命令提示符中发生,可查看训练进度。 5. 注意事项: 建议与字幕自定义节点和 WD14 标签一起使用。 制作字幕时禁用 LoRA 训练节点,防止 Comfy 在制作字幕前启动训练。 目前训练会在 Comfy 的根文件夹中的 log 文件夹中创建日志文件,该日志可能可在 Tensorboard UI 中加载。 默认情况下,训练结果直接保存在 ComfyUI 的 lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2024-12-15
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
大模型的结构和训练方式
大模型的结构和训练方式如下: 整体架构: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括静态的知识库和动态的三方数据集。 模型层:分为 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 训练方式: 收集海量数据:如研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 预处理数据:包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段等。 设计模型架构:通常是一个复杂的神经网络,如可能会使用 Transformer 架构。 训练模型:模型反复阅读数据,尝试预测句子中的下一个词,通过不断重复逐渐学会理解和生成人类语言。 此外,大模型的特点包括预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数)。模型架构方面,有 encoderonly(适用于自然语言理解任务,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,众多 AI 助手采用此结构)。
2024-12-13
开源大模型训练推理,应用开发agent 平台
以下是一些关于开源大模型训练推理、应用开发 agent 平台的相关信息: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到多种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 Gemini 相关:大型语言模型的推理能力在构建通用 agents 方面有潜力,如 AlphaCode 团队构建的基于 Gemini 的 agent 在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色。 成为基于 Agent 的创造者的学习路径:未来的 AI 数字员工以大语言模型为大脑串联工具。Agent 工程如同传统软件工程学有迭代范式,包括梳理流程、任务工具化、建立规划、迭代优化。数字员工的“进化论”需要在 AI 能力基础上对固化流程和自主思考作出妥协和平衡。
2024-12-12