Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成对抗网络 GAN

Answer

生成对抗网络(GAN)是一种在 AI 领域非常重要的模型。

GAN 是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。其中一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。

GAN 在图像生成领域极为引人注目,例如您可能已经听说过的“DeepFake”便是基于这一技术。同时,GAN 也可用于生成视觉逼真度高的视频,但存在控制难度大、时序建模较弱的问题。此外,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。

GAN 诞生于 2014 年,是 Deep Learning 领域的重要里程碑,它可以帮助神经网络用更少的数据进行学习,生成更多的合成图像,然后用来识别和创建更好的神经网络。GAN 的创造者 Ian Goodfellow 是在蒙特利尔的一个酒吧里想出这个主意的,它由两个神经网络玩着猫捉老鼠的游戏,一个创造出看起来像真实图像的假图像,而另一个则决定它们是否是真的。GAN 不仅有助于创建图像,还可以创建现实世界的软件模拟,Nvidia 就大量采用这种技术来增强他的现实模拟系统。

相关的学习资源包括:

  • 课程地址:https://www.cloudskillsboost.google/course_templates/541
  • 视频学习:https://youtu.be/J0AuVBxzui0
Content generated by AI large model, please carefully verify (powered by aily)

References

4. 图像生成

课程地址:https://www.cloudskillsboost.google/course_templates/541视频学习:https://youtu.be/J0AuVBxzui0这是Google的一个AI入门课程,介绍扩散模型,这是一类在图像生成领域最近显示出潜力的机器学习模型。扩散模型的灵感来源于物理学,特别是热力学。在过去的几年中,扩散模型在研究和工业中都变得很受欢迎。扩散模型是Google Cloud上许多最先进的图像生成模型和工具的基础。本课程将向你介绍扩散模型背后的理论,以及如何在Vertex AI上训练和部署它们。[heading2]视频字幕[content]大家好,我叫Kyle Steckler,我是Google Cloud高级解决方案实验室团队的一名机器学习工程师,在本次演讲中我们将深入介绍图像生成[heading1]扩散模型在图像生成领域的应用[content]图像生成已经存在很长时间了,它一直是一个极具吸引力的研究领域。尽管您可能已经听说过许多有趣的方法,这些方法已经被用于图像生成,但随着时间的推移,一些更有前途的方法逐渐脱颖而出。[heading2]变分自动编码器[content]例如,变分自动编码器(Variational Autoencoders,VAEs)将图像编码为压缩的形式,然后在学习数据本身的分布时解码回原始大小。[heading2]生成对抗模型(GAN)[content]生成对抗模型(Generative Adversarial Networks,GANs)也非常流行。这些模型极为引人注目,它们让两个神经网络相互对抗。一个神经网络(生成器)负责创建图像,另一个神经网络(鉴别器)预测图像是真实的还是伪造的。随着时间的推移,鉴别器变得越来越擅长区分真伪,而生成器则越来越擅长创建逼真的图像。您可能已经听说过“DeepFake”这个词,它便是基于这一技术。[heading2]自回归模型[content]最后是自回归模型。这些模型通过将图像视为一系列像素来生成图像。自回归模型的现代方法实际上从大型语言模型(如GPT)如何处理文本中汲取了很多灵感。

AI视频生成(上) | 技术发展概况和应用场景思考

代表产品:RunwayGAN生成对抗网络:是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。可以生成视觉逼真度高的视频,但控制难度大、时序建模较弱。VAE变分自编码器:它是一种可以学习数据分布的网络结构。就像把视频文件压缩成较小的文件再解压一样,它可以重建视频数据。VAE可以根据条件输入控制生成过程,但质量较GAN略低。GAN、VAE生成视频速度快,缺点是生成质量和分辨率较低,长度短,控制能力弱。Transformer自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,这种方式对长视频建模更好,时序建模能力强,可实现细粒度语义控制,缺点是计算量大[heading2]1.4 AI视频生成当前面临的问题[content]当前仍面临生成时间长、视频质量不稳定,生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案有:使用渐进生成、增强时序一致性的模型等方法解决。上述的补帧算法、视频完善策略也可在一定程度上缓解问题。[heading2]二.应用场景思考

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

从2012到现在,深度神经网络的使用呈爆炸式增长,进展惊人。现在Machine Learning领域的大部分研究都集中在Deep Learning方面,就像进入了潘多拉的魔盒被开启了的时代。配图06:AI进化史GAN生成对抗网络(GAN - Generative Adversarial Network)是Deep Learning领域里面另一个重要的里程碑,诞生于2014年,它可以帮助神经网络用更少的数据进行学习,生成更多的合成图像,然后用来识别和创建更好的神经网络。GANs的创造者Ian Goodfellow是在蒙特利尔的一个酒吧里想出这个主意的,它由两个神经网络玩着猫捉老鼠的游戏,一个创造出看起来像真实图像的假图像,而另一个则决定它们是否是真的。配图07:GANs模拟生产人像的进化GANs将有助于创建图像,还可以创建现实世界的软件模拟,Nvidia就大量采用这种技术来增强他的现实模拟系统,开发人员可以在那里训练和测试其他类型的软件。你可以用一个神经网络来“压缩”图像,另一个神经网络来生成原始视频或图像,而不是直接压缩数据,Demis Hassabis在他的一篇论文中就提到了人类大脑“海马体”的记忆回放也是类似的机制。大规模神经网络大规模神经网络的竞赛从成立于2011年的Google Brain开始,现在属于Google Research。他们推动了TensorFlow语言的开发,提出了万能模型Transformer的技术方案并在其基础上开发了BERT,我们在第四章中将详细讨论这些。

Others are asking
LSTM/Transformer/GAN等AI技术分别是指
LSTM(Long ShortTerm Memory)是一种特殊的循环神经网络(RNN),能够处理长序列数据中的长期依赖关系。 Transformer 是一种完全基于自注意力机制(SelfAttention)来处理序列数据的模型,不依赖于循环神经网络(RNN)或卷积神经网络(CNN),比 RNN 更适合处理文本的长距离依赖性。 GAN(Generative Adversarial Network)即生成对抗网络,由生成器和判别器组成,通过两者的对抗训练来生成新的数据。
2025-02-06
GAN生成对抗网络
GAN 生成对抗网络是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。它具有以下特点和应用: 特点: 能够生成视觉逼真度高的视频。 控制难度大、时序建模较弱。 与 VAE 变分自编码器、Transformer 自注意力机制等相比,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 应用: 可以帮助神经网络用更少的数据进行学习,生成更多的合成图像。 有助于创建图像,还可以创建现实世界的软件模拟,如 Nvidia 大量采用这种技术来增强其现实模拟系统。 同时,当前端到端视频生成仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。针对这些问题,可使用渐进生成、增强时序一致性的模型等方法,以及上述的补帧算法、视频完善策略来在一定程度上缓解。
2024-12-18
GAN
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合了检索和生成的技术。 AI 大模型在生成文本时,其知识通常基于训练时使用的公开数据。若想构建能利用私有数据或实时数据进行推理的 AI 应用,就需要特定信息来增强模型知识,这便是 RAG。 RAG 的基本流程为:首先,针对用户输入(如问题或话题),从数据源(如网页、文档、数据库记录)中检索出相关文本片段,这些片段称为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。最后,从大模型输出中提取或格式化所需信息返回给用户。 RAG 由检索器和生成器两部分组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-12-18
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
写一个有关International Organization for Standardization的英文介绍思维导图
以下是为你生成的英文思维导图: ``` International Organization for Standardization | + About ISO | + Founded: 1947 | + Headquarters: Geneva, Switzerland | + Membership: 165 countries | + Purpose: Develop and publish international standards | + Core Values | + Credibility | + Relevance | + Impartiality | + Effectiveness | + Standards Development | + Process: Consultative, Consensual, Transparent | + Types of Standards | + Technical | + Managerial | + Quality | + Environmental | + ISO Standards Examples | + ISO 9001 | + ISO 14001 | + ISO 45001 | + Benefits of ISO Standards | + Facilitate International Trade | + Ensure Quality and Safety | + Promote Best Practices | + Enhance Sustainability | + Stakeholders | + National Standards Bodies | + Industry Experts | + Consumers | + Governments | + ISO's Role in Society | + Economic Development | + Regulatory Compliance | + Consumer Protection | + Environmental Conservation | + ISO's Work Areas | + Agriculture | + Healthcare | + Manufacturing | + Technology | + Services | + Global Reach and Influence | + International Cooperation | + Harmonization of Standards | + Recognition of Standards | + Future Initiatives + Sustainable Development Goals + Digital Transformation + Innovation and Technology ```
2024-06-06
能用简单易懂的方法给我讲一下生成对抗网络GAN的原理和工作流程吗
好的,生成对抗网络(GAN)是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器的任务是创建新的、看起来像真实数据的样本,而判别器的任务是区分生成的样本和真实的数据样本。这两个网络相互对抗,生成器试图欺骗判别器,而判别器试图不被欺骗。这个过程导致生成器逐渐学会生成越来越逼真的样本。
2024-04-22
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26
对抗生成网络是什么
对抗生成网络(Generative Adversarial Network,GAN)是一种深度学习模型,由两个神经网络构成,分别是生成器和判别器。 生成器负责生成虚拟数据,判别器负责判断这些数据是真实数据还是虚拟数据。两个网络不断反复训练和竞争,从而不断提高生成器生成真实数据的能力,直到生成的数据与真实数据无法区分。 GAN 可以用于图像、声音、文本等各种类型的数据生成和合成,被广泛应用于计算机视觉、自然语言处理等领域。但它也存在一些问题,比如控制难度大、时序建模较弱。同时,与其他生成模型如 VAE(变分自编码器)、Transformer 自注意力机制相比,各有优缺点。VAE 可以根据条件输入控制生成过程,但生成质量较 GAN 略低;Transformer 自注意力机制对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 在当前的 AI 视频生成中,GAN 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱等缺点,仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。
2024-12-30
请给我生成一份ai学习方案
以下是一份基于李宏毅教授的《生成式 AI 导论 2024》的 AI 学习方案: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要涵盖生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,您将掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,并了解生成式 AI 的发展现状和未来趋势。 三、学习内容 1. 什么是生成式 AI 生成式 AI 的定义和分类 生成式 AI 与判别式 AI 的区别 生成式 AI 的应用领域 2. 生成式模型 生成式模型的基本结构和训练方法 生成式模型的评估指标 常见的生成式模型及其优缺点 3. 生成式对话 生成式对话的基本概念和应用场景 生成式对话系统的架构和关键技术 基于生成式模型的对话生成方法 4. 预训练语言模型 预训练语言模型的发展历程和关键技术 预训练语言模型的优缺点 预训练语言模型在生成式 AI 中的应用 5. 生成式 AI 的挑战与展望 生成式 AI 面临的挑战和解决方法 生成式 AI 的未来发展趋势和研究方向 四、学习资源 1. 教材:《生成式 AI 导论 2024》,李宏毅 2. 参考书籍:《深度学习》,伊恩·古德费洛等 3. 在线课程:李宏毅的生成式 AI 课程 4. 开源项目:OpenAI GPT3、字节跳动的云雀等 五、学习方法 1. 认真学习教材和参考书籍,理解基本概念和原理。 2. 观看在线课程,跟随李宏毅教授的讲解深入学习。 3. 参与开源项目,实践所学知识,提高实际操作能力。 4. 结合课程中的案例和实践项目,加深对知识的理解和应用。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录: 1. 第 0 講:課程說明(2024 年 2 月 24 日) 2. 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 3. 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 4. 第 3 講:訓練不了人工智慧?你可以訓練你自己—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 5. 第 4 講:訓練不了人工智慧?你可以訓練你自己—拆解問題與使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲:课程说明 1. 知道: 有能力自己开发 何时需要自己开发 何时可以用现成的人工智能 2. 目标: 了解生成式 AI 背后的原理和更多可能性,作为您成为魔术师的开始 体验用生成式 AI 打造应用 体验训练自己的生成式 AI 模型 负面体验 花时间:大模型是以周为单位来训练 结果不可以控制:养花养小动物 3. 影响模型能力的指标很多,但是常规会看参数的量级来评估,量级指数级增长,FOMO,这就是的立场来源 2019 年 GPT2.0 15b 参数 2024 年 GPT3.5 70b 参数
2025-02-06
短视频生成
以下是关于短视频生成的相关信息: 使用video参数创建短视频: 适用范围:仅适用于图像网格,不适用于图像放大。 可搭配的模型版本:版本为 1、2、3、test 和 testp。 示例:Vibrant California Poppies、Botanical Sketch of Fanciful Ferns。 获取视频链接的方法: 1. 添加video 到提示词结尾。 2. 等任务结束后点击表情符号。 3. 选择✉️emoji。 4. 会在私信中收到视频链接。 5. 单击链接在浏览器中查看视频,右键单击或长按下载视频。需注意视频处理时间和存储空间。 使用方法:添加video 到提示词结尾。 腾讯运营利用 ChatGPT 生成短视频:通过 ChatGPT 生成文案,将文案复制到支持 AI 文字转视频的工具内,如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类工具让视频制作更轻松上手。 根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 3. Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 4. VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 5. Runway:将文本转化为风格化视频内容,适用于多种场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具各有特点,适用于不同场景和需求,能帮助不同人群快速生成吸引人的视频内容。但内容由 AI 大模型生成,请仔细甄别。
2025-02-06
文案生成prompt
以下是关于文案生成 prompt 的相关内容: 景淮:新春贺卡制作(中文版本)GPTs 实战 文案生成:先从最简单的生成元旦文案开始测试,不增加任何限制查看初始生成效果。发现生成的祝福词较长且不符合需求,通过增加字数限制、换行符和每句话的限制进行调整。给予一些少样本后效果有所好转。 生成文字图片调试:圣诞贺卡部分已有成熟的图片生成提示词,修改为元旦贺卡提示词。运行后发现图片中文字不能很好分割,多次对话调整后,为避免文字长度测量问题,在每句话末尾加上固定的“\n”换行符,同时调整 Python 代码和文字大小等。 提示词编写测试:包括初始提示词、迭代后提示词、GPTs 体验链接(因甲方要求新增“字体选择”功能)和生成效果图。 Han:优质 Prompts 分类精选 学习辅助:教案生成器,作者为教师,版本 0.3。描述为可根据教师要求生成适合不同年级、科目、教材和标准的教案,具有丰富教学经验和专业知识,擅长运用多元化教学方法和评价方式,注重培养学生创新能力和综合素养。具备分析教师需求、设计教学环节、生成清晰合理教案文档、根据学生特点调整教案、利用多媒体和互动方式增加趣味性和参与度、运用反馈和评价促进教学改进等技能。 视频模型:MiniMax 海螺 AI 主体参考功能使用教程:主体参考功能的生成逻辑与文生视频相似,详见文生视频 Prompt 教程。用于主体参考功能的 Prompt 只涉及单人内容可获得最准确表现效果,若涉及多主体,可补充特定主体描述,海螺 AI 能通过年龄、性别识别对应面部主体并完成生成。
2025-02-06
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
可以生成五分钟以上视频的AI
以下是一些可以生成五分钟以上视频的 AI 工具: 1. GoogleAI 视频 Veo2: 功能点: 能够生成具有高度真实感和物理规律的视频。 对拍摄风格、角度、运动等的语义理解极佳。 能够对运动物体进行超级稳定的多轮材质变化。 能够直接输出 4K 视频。 优势: 高真实质感,让人难以区分真实拍摄和 AI 生成。 遵循视频中的物理规律和现实世界一致。 在特效变换中表现出极高的稳定性。 在 Google 的评测中,多数情况下取得了最优结果。 体验无需长时间排队等待。 2. Sora(由 OpenAI 开发):能够生成长达 1 分钟以上的视频,能根据文字指令创造出逼真且充满想象力的场景,视频中的人物和背景具有较高的一致性和稳定性。 3. 其他工具: Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-05
可以生成五分钟以上视频的AI
以下是一些可以生成五分钟以上视频的 AI 工具: 1. GoogleAI 视频 Veo2: 能够生成具有高度真实感和物理规律的视频,对拍摄风格、角度、运动等的语义理解极佳。 可以对运动物体进行超级稳定的多轮材质变化,能够直接输出 4K 视频。 具有高真实质感,遵循物理规律,稳定性强,在评测中多数情况下取得最优结果,且体验无需长时间排队等待。 2. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,由 Stability AI 开源。 4. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 5. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 6. Sora(OpenAI):能够根据文字指令创造出逼真且充满想象力的场景,生成长达 1 分钟的超长视频,一镜到底,视频中的人物和场景具有较高的一致性和稳定性。 更多的文生视频的网站可以查看: 需注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-05
什么是深度神经网络
深度神经网络是机器学习文献中的一类模型,受到生物神经网络的启发。一般来说,深度神经网络可分为以下几类: 1. 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 2. 循环网络:在其连接图中有定向循环,可能具有复杂动态,训练较难,但更具生物真实性。 深度神经网络具有以下特点和应用: 1. 可以计算一系列改变样本相似性的变换,几乎能应用于任何从输入到输出空间复杂映射的机器学习问题。 2. 能够用于模拟大脑工作方式、了解并行计算风格以及解决实际问题。 在其发展过程中,如感知机的出现推动了机器学习的问世,展示了其对简单形状分类的学习能力。神经网络本质上是多层感知机,早期只有输出层,而典型应用如分辨手写数字。 同时,在深度神经网络的研究中,还涉及到如深度玻尔兹曼机、受限玻尔兹曼机、深度信念网络等相关内容。但使用反向传播等方法存在需要有标签的训练数据、学习时间不理想、可能陷入局部最小等问题。
2025-02-03
网络上有关于AI知识的授课,请问标价一般在多少范围内合适
网络上关于 AI 知识的授课,比如“野菩萨”的课程,其内容丰富多样,包括: 预习周课程:涵盖 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:包含 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 该课程标价情况如下: 冠军奖励:4980 课程一份。 亚军奖励:3980 课程一份。 季军奖励:1980 课程一份。 入围奖励:598 野神殿门票一张。 同时,如果想要免费获得这门课程,可以参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-01-31
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
想写网络小说如何找到合适的AI工具
如果您想写网络小说并找到合适的 AI 工具,以下是一些建议和相关信息: 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 相关工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 关于用 AI 写出更好文字的方法: 1. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。直接点出这种东西常常出现在什么地方,是什么。比如,要写的小说可能是“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。 2. 对于短剧剧本创作这类困难任务,可以让模型写一种特殊格式的网络小说,剩下的尽量显式地描述想要的东西的特征。 3. 往 prompt 里面塞例子,这是一个暴力但是管用且流行的办法。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-22
神经网络相关书籍推荐
以下是为您推荐的神经网络相关书籍: 1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。 2. 关于神经网络信念网络方面的研究文献: Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network.Computer 21,3,7788. H.Bourlard and Y.Kamp.1988.Autoassociation by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,45,291294. P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1,5358. Hinton,G.E.&Zemel,R.S.,Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.310. Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.,147169. LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F..A tutorial on energybased learning.Predicting structured data,1,0. Neal,R.M.,71113. Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.,11581161. 此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:
2025-01-14