Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型成本趋势

Answer

大模型的成本趋势如下:

  • 目前存在唱衰大模型的观点,认为其难以找到可商用场景,部分功能存在幻觉问题,且算力成本高,导致商业模式难以形成闭环。
  • 但也有观点认为,关于算力成本,已有许多解决方案,如模型蒸馏、苹果的端云方案等,今年内算力成本问题有望不再是难题。
  • 对于不同规模的模型,小模型在某些特定应用中有其优势且足够好用,但大模型会解锁新的有价值的应用程序。不过并非所有应用都能证明大模型的成本合理。
  • 在多模态大模型方面,随着数据集和模型规模扩大,传统模型带来巨大计算量。研究人员利用现成训练好的单模态基础模型,可减少多模态训练费用、提升效率。不同模态模型分开训练,如何实现模态连接和协同推理是核心挑战。
Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

[heading2]一、写在前面[content]写这篇文章的初衷,源于近期涌起的唱衰AI大模型的风潮。不少人在对大模型的机制及当下的商业形态进行了初步了解后,便断言大模型是一场“骗局”,是资本操控的闹剧。同时,近来不管是投资领域还是各大厂,似乎都开始谨慎衡量做大模型这件事的投资回报率(ROI)。难道大模型当真不像去年众人所认定的那样,是一场所谓的“革命”吗?唱衰大模型的人,大多持有这样的观点:他们觉得大模型仅能实现像chatbox、文生图、图生图、生视频、生音频之类的功能,难以找到可商用的场景,更别说其中部分功能还可能存在幻觉问题。同时,大模型的算力也是有成本的,而且价格不低。所以问题就出现了,即我们做出了一个个看似出色的ai产品,用户日活量或许也很高,但高日活带来的是高机器算力费用,而这笔费用又无法从活跃用户身上获取,所以这个商业模式就难以形成闭环了。所以这种理解倒不能说是错误的,但这是建立在两个前提之上的。第一,大模型确实后续也仅能用在聊天以及生成图片、文字、视频了;第二,算力的费用会持续居高不下。但在我看来,这两点都是不成立的。首先关于第二点的算力的问题,已经有许多解决方案了,不论是模型蒸馏,还是苹果的端云方案等等,我认为今年内算力成本问题将不再是难题。那么第一点,其实也是今日的重点。而要知晓一个新事物究竟能够带来什么样的改变,我认为首先是先需要明晰其运作原理究竟是怎样的。实际上,我也看过市面上很多有关大模型的科普文章,坦白讲,对于非技术人员而言,理解起来颇具难度。所以,我期望这篇文章能通过最为直白、最为简单的描述,帮助各位产品同学,理解何为大模型,大模型是如何运作的,大模型究竟带来了什么,以及我们究竟该去怎么看待这次大模型的浪潮。

访谈:Ilya | 2023年11月长篇访谈

主持人:我对可靠性的看法是,就您的观点而言,它会随着模型规模的增加而增加,而且如果您针对特定用例或实例或数据集进行微调,它也会增加。因此,在尺寸与专业微调与可靠性方面存在权衡。Ilya:关心某些特定应用的人们肯定有充分的动机让最小的模型足够好地工作。我认为这是真的。这是不可否认的。我认为任何关心特定应用程序的人都会想要最小的模型。这是不言而喻的。我确实认为,随着模型不断变得更大、更好,它们就会解锁新的和前所未有的有价值的应用程序。所以,是的,小型模型将在不太有趣的应用中占有一席之地,但它们仍然非常有用。然后更大的模型将交付应用程序。例如,考虑提供良好法律建议的任务。如果你能真正相信答案,那真的很有价值。也许您需要一个更大的模型,但它证明了成本的合理性。主持人:今年,尤其是7b(70亿参数)尺寸的投资非常多,而且还有7b、13b、34b尺寸。您认为在这些规模上继续研究是浪费吗?Ilya:不,当然不。我认为从中期来看,无论如何,按照人工智能的时间尺度,将会出现这种情况。在一个生态系统中,不同的模型大小会有不同的用途。对于很多人来说,最好的7b模型已经足够好了,他们会感到非常兴奋。他们将对此感到极度欣喜。接下来,我们将看到大量令人兴奋和惊奇的应用程序,但这还远远不够。我想,这就是我想说的全部。我认为大模型会比小模型更好,但并非所有应用程序都能证明大模型的成本是合理的。

多模态大模型入门指南-长文慎入【持续更新】

最近,多模态大模型取得重大进展。随着数据集和模型的规模不断扩大,传统的MM模型带来了巨大的计算量,尤其是从头开始训练的话。研究人员意识到MM的研究重点工作在各个模态的连接上,所以一个合理的方法是利用好现成的训练好的单模态基础模型,尤其是LLM。这样可以减少多模态训练的费用,提升训练效率。MM-LLM利用LLM为各种MM任务提供认知能力。LLM具有良好的语言生成,zero-shot和ICL的能力。其他模态的基础模型则提供了高质量的表征。考虑到不同模态的模型是分开训练的,如何将不同模态连接起来,实现协同推理,是核心挑战。这里面的主要工作便是通过多模态预训练和多模态的指令微调,来实现模态之间的对齐,以及模型输出与人类意图的对齐。[heading3]1.2多模态的发展历程:[content]关于多模态的发展主要有:最初的发展集中在多模态的内容理解和文本的生成:Flamingo,BLIP-2,Kosmos-1,LLaVA/LLaVA-1.5/LLaVA-1.6,MiniGPT-4,MultiModal-GPT,Video-Chat,VIdeo-LLaMA,IDEFICS,Fuyu-8B,Qwen-Audio同时实现多模态的输入和输出工作MM-LMM,探索特定模态的生成,例如Kosmos-2,Mini-GPT5,以及语音生成的SpeechGPT将LLM和外部工具继承进来,实现“any-to-any”的多模态理解和生成。visual-chatgpt,ViperGPT,MM-React,HuggingGPT,AudioGPT同样,有为了减少级联过程中传播误差的工作,有NExT-GPT和CoDI-2,来开发任意模式的多模态模型

Others are asking
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
如何搭建大模型
搭建大模型需要注意以下几个方面: 1. 认识到开发大模型应用的复杂性,许多细节和阶段在实际操作中才会逐渐显现,因此并非易事。 2. 提示词设计需要精细工作,精心设计和调试是确保流程顺畅和应用有价值的关键,其直接影响模型输出质量和应用效果。 3. 构建有效的大型语言模型应用需要: 重视工程化,避免模型应用无法维护。 根据项目需求选择合适的开发框架。 了解业务深层次需求,设定流程环节以确保模型能解决实际问题。 在每个环节精心设计提示词,引导模型提供准确有用的回复。 确保应用在提供服务时遵守安全和伦理标准。 通过不断测试和迭代优化模型性能和用户体验。 成功部署后持续维护和更新,以适应需求变化。 掌握这些关键点,能确保构建的模型应用技术先进,真正解决用户问题并提供有价值的服务。此外,本次的彩蛋更新加入了“Emotion”字段,智能体构建专家会动态推理智能体情感设定,帮助制作更有情商的智能体。
2025-03-07
法律 大模型 都有哪些
以下是一些法律大模型: ChatLaw:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来)、ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升)、ChatLawText2Vec。使用 93 万条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。地址:训练而来,中文各项表现很好,但逻辑复杂的法律问答效果不佳,需要用更大参数的模型来解决。
2025-03-07
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07
是否有可以免费使用的可以辅助机械设计的AI大模型
以下是一些可以免费使用且能辅助机械设计的 AI 大模型: 1. Trae 国内版:内置豆包 1.5 pro、DeepSeek 满血版等大模型,无限量免费使用。其作为 AI IDE,整体比插件好用,连接稳定快速,界面根据国内用户习惯定制。 2. 阿里的通义千问大模型:有免费接口,但可能存在一定的免费额度限制。 3. 智谱 AI(ChatGLM):有免费接口,同样可能有免费额度的限制。 4. 科大讯飞(SparkDesk):提供免费接口,可能有限制免费额度的 Token。 此外,谷歌的 Gemini 大模型和海外版 Coze 的 GPT4 模型免费且能图片识别,但使用时需要给服务器挂梯子。
2025-03-07
是否有可以免费使用的机械工程领域的AI大模型
目前有可以免费使用的机械工程领域相关的 AI 编程工具 Trae。 Trae 具有以下特点: 1. 国内版使用国内模型,连接稳定快速,界面根据国内用户习惯定制。 2. 内置豆包 1.5 pro、DeepSeek 满血版、Claude 3.5 等大模型,可无限量免费使用。 3. 具有完整的 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等,并提供智能问答、实时代码建议、代码片段生成、从 0 到 1 开发项目等功能。 4. 全中文界面,支持 Windows 和 MacOS 系统,操作界面简洁直观,即使是技术小白也能快速上手。 5. 内置顶级 AI 模型免费畅享,如 Claude 3.5 和 GPT4o,完全免费且不限使用次数。 下载链接:https://sourl.co/2DCmmW 官方说明文档:https://docs.trae.ai/docs
2025-03-07
为什么deepseek可以实现低成本
DeepSeek 能够实现低成本的原因可能包括以下几点: 1. 采用了独特的技术架构或算法,例如 GRPO 算法替代传统 PPO,降低了价值函数估计难度,提高了语言评价场景的灵活性与训练速度。 2. 在性能上能够媲美领先的 AI 产品,但成本仅为其一小部分,从而实现了成本的有效控制。 3. 在实际使用体验中,虽然在某些方面存在不足,如专业论文总结方面稍弱,但在其他方面表现良好,可能通过优化资源配置实现了成本的降低。 需要注意的是,以上是根据所提供的内容进行的推测和总结,具体的低成本原因可能还需要更详细和准确的技术分析及相关资料。
2025-02-10
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
模型成本
以下是关于模型成本的相关信息: GPT3.5 系列: gpt3.5turbo:功能强大,针对聊天优化,成本仅为 textdavinci003 的 1/10,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:gpt3.5turbo 2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持在文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 其他模型供应商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用,接口响应速度快,指令灵活性差些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本 0.05 元/千 tokens。 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用,指令灵活性丰富,接口调用入门流程长,密钥安全性高,调用成本 0.008 元/千 tokens,训练成本 0.03 元/千 tokens。 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本 0.005 0.015 元/千 tokens,输出成本 0.02 0.07 元/千 tokens。 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在 0.05 0.1 元/次。 Claude 3 系列: Opus:最智能,擅长处理复杂任务,输入成本 15 美元/百万 token,输出成本 75 美元/百万 token,上下文窗口 200K token(特定用途 1M token 可用,详情咨询),应用场景包括任务自动化、研发、策略分析等。 Sonnet:平衡,应用场景包括客户服务、内容审核、优化物流等,优势在于速度和成本效益。 此外,Claude 3 系列在设计上注重安全和可靠,持续改进减少模型偏见,提高公正性和中立性,被评定为 AI 安全等级 2(ASL2)。
2025-01-31
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
现在ai最前沿的发展趋势是什么
AI 技术的发展历程和前沿趋势如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 在学习路径方面: 偏向技术研究方向: 1. 具备数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 熟悉自然语言处理,如语言模型、文本分类、机器翻译等。 5. 了解计算机视觉,如图像分类、目标检测、语义分割等。 6. 跟进前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 掌握编程基础,如 Python、C++等。 2. 熟悉机器学习基础,如监督学习、无监督学习等。 3. 熟练使用深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,如项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,去年生成式 AI 从不引人注意走到了 AI 50 强榜单的前列。今年,随着企业用户和消费者的 AI 生产力大幅提高,其成为前沿和中心。尽管 2023 年美国的大部分 AI 风投流向了基础设施领域,应用公司仍在 AI 50 强榜单中占据主导地位。如今,许多公司正将 AI 融入其工作流程,以此来快速达成 KPI。不远的将来,我们有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。
2025-03-08
如何去训练ai,让ai可以更精准的回答问题分析趋势
要训练 AI 使其更精准地回答问题和分析趋势,可以从以下几个方面入手: 检索原理: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 2. 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合,形成统一的叙述或解答框架。 5. 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 大模型生成回答: 最终全新的上下文被传递给大语言模型,大语言模型根据提供的信息回答问题。因为这个上下文包括了检索到的信息,所以相当于同时拿到了问题和参考答案,通过大语言模型的全文理解,生成准确和连贯的答案。 批判性思维与复杂问题解决: 批判性思维指分析、评估、推理并做出明智判断的能力,在 AI 时代尤为关键。培养批判性思维需要养成质疑习惯,通过辩论、逻辑训练、阅读反面意见等方式锻炼,注重逻辑推理和定量分析能力的培养。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,往往需要综合运用多种思维技能,通过参与实际复杂项目、案例研究来提高经验,可利用 AI 作为资料提供者或头脑风暴助手,但关键在于人类自己的分析和决策过程。 纯强化学习: DeepSeek R1 引入纯强化学习,不依赖大量人类标注数据,而是让 AI 通过自我探索和试错来学习。在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(包括准确率奖励和格式奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。纯强化学习有可能解锁新的人工智能水平,DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。
2025-03-07
帮我找一下与智能体相关的,报告或ppt或演讲。是介绍趋势性质的,不是工具类的
以下是为您找到的与智能体相关的报告、演讲等内容: 《【翻译】Google Agent 白皮书》:探讨了智能体的概念,定义为能够自主观察并操作外部世界以实现目标的应用程序。智能体结合了生成式 AI 模型、工具和编排层,能够进行推理和决策。工具使智能体与外部数据和服务交互,扩展其能力。认知架构是智能体的核心,涉及信息收集、计划、执行和调整的循环,利用提示工程框架指导智能体的任务执行与环境互动。 《吴恩达最新演讲——AI 四大趋势》:在吴恩达的主题演讲中,探讨了智能体(AI Agents)和智能体推理(Agentic Reasoning)的崛起,强调非结构化数据的重要性。演讲指出,生成式 AI 使得应用开发速度大幅提升,快速实验成为创新的新路径,但同时带来了评估的挑战。吴恩达还提出了智能体 AI 的四大设计模式,并强调图像处理革命的潜力。 《01通往 AGI 之路知识库使用指南》:提到了 AI 智能体的进阶、案例拆解及扣子的应用介绍,指出提示词很关键,智能体由大语言模型衍生而来,讲述了智能体进阶案例拆解,推荐景淮老师的相关成果,阐述扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用。
2025-03-07
我比较焦虑 感觉AI是一个趋势,但是不知道怎么能融入其中并且分一杯羹
以下是关于您如何融入 AI 趋势并从中获益的一些建议: 在哲学与意识本体论方面: 对于 AGI 的发展,存在对其状态的判断风险,可能导致道德灾难。若错判 AI 有无主观体验,可能导致权利泛滥或新的压迫,因此必须深入研究意识原理。 AGI 的存在挑战了各种哲学流派,如实体二元论将更难维持,宗教和灵性团体可能会调整教义。 AGI 可能推动科学界更务实地探索意识指标,出现“人工意识测试”,通过神经信号等指标判断系统是否有意识。 在个人成长路径方面: 当具备一定 AI 素养并熟练使用常用工具后,应将 AI 融入学习和工作流程,如在学习新知识时利用其推荐学习计划和资料,在项目工作前进行头脑风暴和方案生成,写作时协助起草提纲等。 要将 AI 视为学习放大器,避免完全替代思考,如亲自阅读理解 AI 翻译的外文文献,自主评估 AI 生成方案的可行性并决策。通过人机配合,在保证大脑不懈怠的前提下,大幅扩展学习广度和工作产出。 总之,融入 AI 趋势需要不断学习和实践,合理利用 AI 提升自身能力,同时关注其带来的伦理和哲学问题。
2025-03-07
怎么学python,以适应AI时代趋势为导向
以下是一些关于以适应 AI 时代趋势为导向学习 Python 的建议: 1. 学习资源: 微信机器人教程,其中介绍了在 Linux 环境安装 Python 以及 Python 虚拟环境的相关知识。 吴恩达的 AI Python 初学者课程,这是一系列四门短期课程,适合任何技术水平的人。 2. 基础知识: 掌握 Python 的安装和编程基础,包括变量、数据类型、控制结构、函数等。 了解 Python 虚拟环境,它是一个独立的 Python 运行空间,用于隔离不同项目的依赖库,避免与系统的 Python 版本形成冲突。 3. 数学和理论基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN),以及常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践和应用: 学会向 AI 提供线索,这对于快速修复问题非常重要。 可以使用 Cursor 的菜单 Open in intergrated Terminal 直接切换到对应目录,也可以使用 cd 命令。 参考 Cursor 提示词网站:https://cursor.directory/,学习和参考其中大量网友实践后上传的提示词。 通过构建 AI 应用程序进行学习,例如编写与大型语言模型交互的代码,以快速创建有趣的应用程序来定制诗歌、编写食谱和管理待办事项列表。 总之,强烈推荐在 AI 时代掌握 Python 这门编程语言,不断学习和实践,以适应时代的发展趋势。
2025-02-17
有关于数据标注行业发展趋势的文章吗?
以下是关于数据标注行业发展趋势的相关内容: 数据标注行业呈现出以下几个主要的发展趋势: 从量到质的转变:早期大模型训练侧重通过大量算力和大规模数据集来提升性能,但随着技术进步,数据质量成为提高模型性能的关键瓶颈,更注重提高数据的质量和相关性,而非单纯增加数据量和算力。 数据标注向知识密集型转变:多模态模型需处理多种类型数据,使数据标注过程更细致复杂。例如进行情绪判断或推理时,需要更高水平的理解和分析能力。这要求从事标注的人员不仅要接受专业培训,在某些情况下还需要特定领域专家执行。 数据标注的自动化和合成数据的使用:随着人工智能技术发展,数据标注领域正经历自动化转型,可使用大模型自动标注数据,提高标注效率并减少人力成本。合成数据使用越来越普遍,因其成本较低、能避免隐私问题及可生成长尾场景数据。例如在自动驾驶领域,可用于生成罕见但关键的路况场景,提高模型的鲁棒性和准确性。 此外,相关法律法规也对生成式人工智能技术研发过程中的数据标注做出规定,如提供者应制定清晰、具体、可操作的标注规则,开展数据标注质量评估,对标注人员进行必要培训等。
2025-02-17