直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型成本

回答

大模型的成本主要通过 token 数量来计算。普通常见单词使用一个 token,不常见单词可能被拆分从而消耗更多 token。一般 300 个单词约需 400 个 token,token 消耗通常比单词数多出 33%左右。

以 GPT 为例,一个成年人一小时阅读约 30000 个词,按转化率约需 40000 个 token。GPT3.5 每 1000 个 token 需 0.002 美元,供成年人阅读使用 1 小时消耗 0.08 美元(8 美分);GPT4 则需 2.4 美元。

在搭建 AI 微信聊天机器人方面,极简未来平台的费用取决于使用的大模型和调用次数,按 Token 数量计费。如使用 GPT-3.5 模型每次对话大约消耗不到 20 积分,平台有签到免费领积分福利,也可充值,19 元可兑换 10000 积分,能满足日常使用好几个月。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

学习笔记:Generative AI for Everyone吴恩达

token,通常指的是:文本中可以被视为一个单独单位的元素,比如单词、数字或符号。如图所示,普通常见单词,使用一个token,但是不常见的单词可能被计算机拆分,于是会消耗更多的token.如果需要使用300个单词,大概会使用400个token.一般token消化会比单词书多出33%左右。价格举例:计算举例:一个人每分钟阅读250个词,一小时可以阅读15000个词;但因为需要输入以后才有输出,所以文本输入假设与文本输出相同,那输入同样需要15000个词;输入与输出一共需要30000个词,按照转化率,约需要40000个token;按每1千个token需要0.002美元来看,GPT3.5供一个成年人阅读使用1小时,消耗0.08美元即8美分;当然如果变成GPT4,费用就变成了2.4美元[heading4]检索增强生成(RAG)[content]普通的聊天机器人,在提问这里有供员工停车的地方时,会请求更多的信息。而RAG聊天机器人,会搜索相关文件并给出答案。为什么?RAG分三个步骤第一步,给出答案后,搜索相关文件找寻答案第二步,将检测到的文件文本合并到更新的提示词中第三步,通过增加的内容来生成对应的答案(有时会直接展示链接文件供用户参考)现有许多应用软件中,可以提交PDF文档,阅读网址信息等,用户直接提问AI工具从而获得信息大模型有非常多的通用知识,但并不知道所有事。通过提供相关的信息,可以要求大模型处理信息并给出答案将大模型作为推理引擎来处理信息而不是知识库

零基础模板化搭建 AI 微信聊天机器人

A10:极简未来平台的费用主要取决于使用的大模型和调用次数。具体费用是按照Token数量计算的,不同的大模型能力,所需的Token数不同。例如,使用GPT-3.5模型的每次对话大约消耗不到20积分。平台还提供了每天签到免费领取积分的福利,用户可以通过签到免费获得50到几百积分。除此之外,充值19元可以兑换10000积分,这些积分足够日常使用好几个月了。所以,实际使用成本并不高。Q11:服务器的费用如何?A11:腾讯云的轻量应用服务器价格非常划算,尤其是新用户优惠活动。例如,一个2核2G3M的服务器套餐一年只需82元,当然新用户优惠过后可能之后的续费费用会贵一点,100多到几百一年不等。这使得即使是技术小白也能低成本试错,体验在云端部署和运行服务的乐趣。Q12:宝塔面板和Docker的使用费用如何?A12:宝塔面板有免费和付费版本,免费版已经提供了足够多的功能,完全可以满足本教程的需求。Docker是开源免费的,使用Docker部署和管理应用不会产生额外费用。Q13:如果技术小白担心不会运维服务器和服务,该怎么办?A13:对于技术小白来说,运维服务器和服务可能看起来有些复杂,但以下几点可以帮助解决这个问题:

零基础模板化搭建 AI 微信聊天机器人

其实机器人应用背后使用到的大模型等能力都是需要付费,先给你看看目前平台的计费规则:详细版的计费规则在这里-https://docs.link-ai.tech/platform/funds/price其实AI大模型相关的功能交互,主要都是用Token来作为单位的,不同的大模型能力,平台一积分能兑换到Token数是不同的,能力越强的大模型一积分所能兑换到的Token数就越少,像我日常使用的GPT 3.5能力的大模型,平均每次对话大概都会消耗不到20积分:除了每天平台的签到可以免费领取50到几百的积分,而充值的话,目前是可以19元兑换10000积分,说实在的,我充了这个一次,已经够我使用好几个月了,所以大模型的使用成本其实不算高了...

其他人在问
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
大模型成本趋势
大模型的成本趋势如下: 目前存在唱衰大模型的观点,认为其难以找到可商用场景,部分功能存在幻觉问题,且算力成本高,导致商业模式难以形成闭环。 但也有观点认为,关于算力成本,已有许多解决方案,如模型蒸馏、苹果的端云方案等,今年内算力成本问题有望不再是难题。 对于不同规模的模型,小模型在某些特定应用中有其优势且足够好用,但大模型会解锁新的有价值的应用程序。不过并非所有应用都能证明大模型的成本合理。 在多模态大模型方面,随着数据集和模型规模扩大,传统模型带来巨大计算量。研究人员利用现成训练好的单模态基础模型,可减少多模态训练费用、提升效率。不同模态模型分开训练,如何实现模态连接和协同推理是核心挑战。
2024-12-19
我需要制作一个低成本刷航段的规划智能体
很抱歉,目前没有关于制作低成本刷航段规划智能体的相关内容。但一般来说,要制作这样的智能体,您可能需要考虑以下几个方面: 1. 数据收集:收集有关航班、票价、航线等相关信息。 2. 算法设计:运用合适的算法来优化航段选择和成本计算。 3. 规则设定:明确刷航段的规则和限制,以确保合法合规。 4. 成本评估:准确评估各种方案的成本,包括机票价格、附加费用等。 由于缺乏具体的案例和详细信息,以上只是一些初步的建议,希望能对您有所帮助。
2024-12-07
如何用我的照片建一个数字人分身,不限时长,而且成本低
以下是一些用照片创建数字人分身且成本低、不限时长的方法: 1. 剪映 AI:只要有图就可以制作逼真的说话或唱歌的 UGC 数字人娱乐视频。其亮点包括口型自然,制作效率高,写好口播脚本可批量快速制作内容。可以一键克隆专属形象和声音,生成数字分身,快速生产口播视频。数字人适用于口播自媒体等场景。 2. 实战方法:首先添加新轨道,将背景图片轨道的右侧竖线向右拖拽至与视频对齐。然后调整背景图片的尺寸和数字人的位置。接着点击文本智能字幕识别字幕,软件会自动将文字智能分段并形成字幕。最后点击导出按钮导出视频备用。如果希望数字人换成自己希望的面孔,需要用另一个工具进行换脸。 3. VividTalk:让照片说话的技术,单张照片和一段音频可生成看似真实的说话视频,支持多种语言和风格,如真实和卡通风格。 4. HeyGen 的 Avatar2.0:可在 5 分钟内用手机创建个人虚拟分身,支持多语言和口型同步,免费提供服务。
2024-08-27
ai模型chatglm,百川大模型,通义千问,ai产品部署调用api的具体成本
以下是关于 AI 产品部署调用 API 具体成本的相关信息: 国内部分大模型有限制一定免费额度的 Token,如阿里的通义千问大模型、智谱 AI(ChatGLM)、科大讯飞(SparkDesk)都有免费接口。您可以打开相应链接创建 API key。 对于极简未来平台,使用 GPT3.5 模型的每次对话大约消耗不到 20 积分。平台提供每天签到免费领取积分的福利,用户可通过签到免费获得 50 到几百积分。此外,充值 19 元可兑换 10000 积分,能满足日常使用好几个月,实际使用成本不高。 服务器方面,腾讯云的轻量应用服务器对新用户有优惠活动,如一个 2 核 2G3M 的服务器套餐一年只需 82 元,新用户优惠过后的续费费用可能为 100 多到几百一年不等。 宝塔面板有免费和付费版本,免费版已能满足需求。Docker 是开源免费的,使用其部署和管理应用不会产生额外费用。 需要注意的是,不同模型和调用次数的具体费用可能会有所不同,建议您根据实际需求进一步了解和评估。
2024-08-20
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20