构建个人本地知识库可以按照以下步骤进行:
本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)
因为利用大模型的能力搭建知识库本身就是一个RAG技术的应用。所以在进行本地知识库的搭建实操之前,我们需要先对RAG有一个大概的了解。以下内容会有些干,我会尽量用通俗易懂的描述进行讲解。我们都知道大模型的训练数据是有截止日期的,那当我们需要依靠不包含在大模型训练集中的数据时,我们该怎么做呢?实现这一点的主要方法就是通过检索增强生成RAG(Retrieval Augmented Generation)。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给LLM。我们可以将一个RAG的应用抽象为下图的5个过程:文档加载(Document Loading):从多种不同来源加载文档。LangChain提供了100多种不同的文档加载器,包括PDF在内的非结构化的数据、SQL在内的结构化的数据,以及Python、Java之类的代码等文本分割(Splitting):文本分割器把Documents切分为指定大小的块,我把它们称为“文档块”或者“文档片”存储(Storage):存储涉及到两个环节,分别是:将切分好的文档块进行嵌入(Embedding)转换成向量的形式将Embedding后的向量数据存储到向量数据库检索(Retrieval):一旦数据进入向量数据库,我们仍然需要将数据检索出来,我们会通过某种检索算法找到与输入问题相似的嵌入片Output(输出):把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案[heading2]文本加载器(Document Loaders)[content]文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理
本文的思路来源于视频号博主:黄益贺我按照他的视频进行了实操,并且附加了一些关于RAG的额外知识[heading1]一、引言[content]大家好,我是大圣,一个致力使用AI工具将自己打造为超级个体的程序员。目前沉浸于AI Agent研究中无法自拔今天给大家分享的是手把手教你如何部署本地大模型以及搭建个人知识库读完本文,你会学习到如何使用Ollama一键部署本地大模型通过搭建本地的聊天工具,了解ChatGPT的信息是如何流转的RAG的概念以及所用到的一些核心技术如何通过AnythingLLM这款软件搭建完全本地化的数据库虽然我们大多数人不需要在自己部署大模型,但是我期望在本文的帮助下,能够带你手把手折腾一遍。这样在使用任何软件的时候,可以做到知其然,知其所以然。