Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

卷积神经网络模型原理

Answer

卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。

Content generated by AI large model, please carefully verify (powered by aily)

References

学习Hinton老爷子的胶囊网络,这有一篇历史回顾与深度解读

机器之心分析师网络作者:周宇编辑:H4O本文以综述的形式,尽可能详细的向读者介绍胶囊网络的诞生,发展过程与应用前景。本文的内容以Hinton的标志性文章为基础,结合近年来发表在顶会顶刊的文章为补充,力图详细的让读者们了解胶囊网络的各种版本,熟悉它在不同领域的革命性突破,以及它在目前所存在的不足。深度学习和人工神经网络已经被证明在计算机视觉和自然语言处理等领域有很优异的表现,不过随着越来越多相关任务的提出,例如图像识别,物体检测,物体分割和语言翻译等,研究者们仍然需要更多有效的方法来解决其计算量和精度的问题。在已有的深度学习方法中,卷积神经网络(Convolutional Neural Networks)是应用最为广泛的一种模型。卷积神经网络通常简称为CNN,一般的CNN模型由卷积层(convolutional layer),池化层(pooling layer)和全连接层(fully-connected layer)叠加构成。在卷积的过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核的尺寸一般小于图像并且以一定的步长(stride)在图像上移动着得到特征图。步长设置的越大,特征图的尺寸就越小,但是过大的步长会损失部分图像中的特征。此外,池化层也通常被作用于产生的特征图上,它能保证CNN模型在不同形式的图像中能识别出相同的物体,同时也减少了模型对图像的内存需求,它最大的特点是为CNN模型引入了空间不变性(spatial invariance)。

解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型

Transformer是一种神经网络结构。简单地说,神经网络是分析图像、视频、音频和文本等复杂数据类型的一种非常有效的模型。针对不同类型的数据有专门优化过的的神经网络。例如,在分析图像时,我们通常会使用卷积神经网络。大体来说,它们模仿了人脑处理视觉信息的方式。卷积神经网络,图片来自Renanar2,wikiccommons大约从2012年开始,我们已经用CNN相当成功地解决了视觉问题,比如识别照片中的物体,识别人脸,手写数字识别。但在很长一段时间里,语言任务(翻译、文本摘要、文本生成、命名实体识别等)都没有较好的方法。这很不幸,因为语言是我们人类交流的主要方式。在2017年推出Transformer之前,我们使用深度学习来理解文本的方法是使用一种称为循环神经网络(RNN)的模型,它看起来像这样:循环神经网络,图片来自fdeloche,Wikimedia假设你想把一个句子从英语翻译成法语。RNN将一个英语句子作为输入,一次处理一个单词,然后按顺序吐出对应的法语单词。这里的关键词是“顺序”。在语言中,单词的顺序很重要,你不能随意打乱它们。比如下面的句子:“Jane went looking for trouble。(简到处找麻烦。)”意思与句子非常不同:“Trouble went looking for Jane”(麻烦到处找简。)因此,任何能够理解语言的模型都必须捕捉词序,而循环神经网络是通过在一个序列中,一次处理一个单词来做到的。但是RNN有问题。首先,他们很难处理冗长的文本序列,比如长段落或文章。当他们读到一段的结尾时,他们会忘记开头发生了什么。例如,基于RNN的翻译模型可能很难记住长段落主语的性别。

学习Hinton老爷子的胶囊网络,这有一篇历史回顾与深度解读

第一阶段,该模型使用PCAE直接从图像中预测部分模版存在的概率和姿态,并试图通过重新排列部分模板重建原始图像。第二阶段,SCAE使用OCAE预测一些物体胶囊的参数,并试图组织和发现部分和姿势为一组更小的对象,这对于重建图像十分重要。在这个模型中,由现成的神经编码器来实现推理过程,这点与以前的胶囊网络都不相同。其具体的原理如图11所示。图11.Stacked Capsule Autoencoders:(a)部分胶囊将分割输入为部分和姿态,这些姿势随后被放射变换的模板用来重建输入图像;(b)对象胶囊试图把推理出的姿态对应到物体,因此找出潜在的结构信息。具体来说,将一幅图像分割成多个部分并不是件容易的事,所以作者从抽象像素和部分发现阶段开始,提出CCAE(Constellation Capsule Autoencoder),它使用二维点作为部分,给出它们的坐标作为系统的输入。CCAE学习将点集进行建模成为熟悉星座,每一个点都是由独立的相似变换来变形。CCAE能在事先不知道星座的数量和形状的情况下学会给每个点分配对应的星座。之后作者还提出了PCAE(Part Capsule Autoencoder),它学着从图像中推理出它的部分和姿势。最后,叠加OCAE(Object Capsule Autoencoder),OCAE与CCAE高度相似。在CCAE中,一组二维输入点如图12所示,首先对其进行编码到K个对象胶囊中,一个对象胶囊k包含着一个胶囊特征向量ck,它的存在概率ak在0到1之间,然后还存在在一个3x3的对象-观察者关系矩阵,矩阵代表着对象和观察者之间的仿射矩阵。图12.超过三个点的在不同位置,不同尺度和方向的无监督分割。

Others are asking
卷积神经是什么
卷积神经网络是一种在机器学习和计算机视觉领域广泛应用的神经网络架构。 1998 年,Yann LeCun 和他的合作者开发了 LeNet 的手写数字识别器,后来正式命名为卷积神经网络。它可用于从手写数字到 3D 物体的与物体识别有关的所有工作。 卷积神经网络使用卷积层,它过滤输入以获取有用信息,这些卷积层具有学习的参数,能自动调整滤波器以提取最有用信息。例如,在不同任务中,会分别过滤有关对象形状或颜色等的信息。通常,多个卷积层用于在每一层之后过滤图像以获得越来越多的抽象信息。 卷积网络通常也使用池层,以获得有限的平移和旋转不变性,还能减少内存消耗,从而允许使用更多的卷积层。 在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。步长设置会影响特征图尺寸,池化层能保证模型在不同形式的图像中能识别出相同物体,同时减少模型对图像的内存需求,并为模型引入空间不变性。
2024-11-22
可分离卷积
可分离卷积是卷积的一种特殊形式。在深度学习中,卷积具有多种解释和应用。 卷积可以描述信息的扩散,例如在不搅拌时牛奶在咖啡中的扩散,在量子力学中描述测量粒子位置时量子粒子在某个位置的概率,在概率论中描述互相关即重叠的两个序列的相似程度,在统计学中描述标准化输入序列上的加权移动平均值。 卷积滤波器可以被解释为特征检测器,输入针对某个特征进行过滤。图像的互相关可以通过反转核转换为卷积,内核可被解释为特征检测器,检测到特征会导致大输出,没有特征则小输出。 对于深度学习中卷积的哪种解释正确尚不明确,但目前最有用的解释是卷积滤波器作为特征检测器对输入进行过滤以解释图像的互相关。 相关参考资料包括: 图 3:通过在整个图像上滑动图像块来计算卷积。将原始图像(绿色)的一个图像块(黄色)乘以核(黄色斑块中的红色数字),并将其和写入一个特征映射像素(卷积特征中的红细胞)。图片来源:。 图 4:图像的互相关。卷积可以通过反转核(倒置图像)转换为互相关。然后,内核可以被解释为一个特征检测器,其中检测到的特征导致大输出(白色)和小输出(如果没有特征存在)(黑色)。图片取自。 附加材料:
2024-08-09
卷积神经网络
卷积神经网络,也称为卷积网络,使用卷积层来过滤输入以获取有用信息。卷积层具有可学习的参数,能自动调整滤波器以提取对应任务的最有用特征。例如在一般目标识别中侧重对象形状信息,鸟类识别中更倾向于鸟的颜色信息,它会自动适配以找到最佳特征。 通常,多个卷积层依次作用,在每一层后对图像进行过滤,获取越来越多的抽象信息,形成层次特征。 卷积网络还常使用池层,以实现有限的平移和旋转不变性,即便对象出现在异常位置也能检测到,同时能减少内存消耗,从而支持使用更多卷积层。 近期的卷积网络采用初始模块,利用 1×1 卷积核进一步降低内存消耗并加快计算速度,提高训练效率。 例如在自动驾驶汽车场景中,可将驾驶员当前视野的图像输入到卷积神经网络,训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同情况进行微调。 相关附加材料: 。 图 5 展示了一个交通标志的图像被 4 个 5×5 的卷积核过滤,生成 4 个特征图,再通过最大池化进行二次采样。下一层将 10 个 5×5 的卷积核应用于这些子采样图像,并再次将特征映射集中在一起。最后一层是完全连接的层,用于组合所有生成的特征并用于分类器(本质上是逻辑回归)。图像由提供。
2024-07-20
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26
神经网络相关书籍推荐
以下是为您推荐的神经网络相关书籍: 1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。 2. 关于神经网络信念网络方面的研究文献: Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a SelfOrganizing Neural Network.Computer 21,3,7788. H.Bourlard and Y.Kamp.1988.Autoassociation by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,45,291294. P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1,5358. Hinton,G.E.&Zemel,R.S.,Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.310. Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.,147169. LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F..A tutorial on energybased learning.Predicting structured data,1,0. Neal,R.M.,71113. Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.,11581161. 此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:
2025-01-14
神经网络
神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,是一种特定的算法,能应用于从输入到输出空间复杂映射的各类机器学习问题。 神经网络的发展历程如下: 早期,康奈尔航天实验室的 Mark I 感知机是第一台感知机的硬件,罗森布拉特用定制硬件的方法实现了感知机的想法,展示出它可对简单形状进行正确分类,自此机器学习问世。 神经网络本质上是多层感知机,在早期只有一层输出层。例如分辨手写数字时,输入是图像像素,有 10 个输出神经元,分别对应 10 个可能的数字,权值最高的和被视为正确输出。 神经网络的架构主要分为三类: 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 循环网络:在连接图中有定向循环,可按箭头回到起始点。其动态复杂,训练难度大,但更具生物真实性。 Geoffrey Hinton 对神经网络的发展做出了重要贡献。早在 80 年代初期,他和同事开展研究时,因电脑性能限制成果有限,且当时 AI 主流研究方向不同,处境艰难。但他们坚持下来,到 2004 年创立了 Neural Computation and Adaptive Perception 项目。随着时间推移和计算机能力发展,神经网络更加快速、灵活、高效和可扩展。 神经网络可用于解决分类和回归等问题,在多个输出值的函数或具有多个类别的分类任务中,多输出函数能用位于同一层的多个感知机来学习。
2024-11-01
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
神经网络的简单理解
神经网络是一种模仿生物神经网络结构和功能的数学模型或计算模型,用于分析图像、视频、音频和文本等复杂数据类型。 对于不同类型的数据有专门优化的神经网络,如分析图像时常用卷积神经网络,其模仿人脑处理视觉信息的方式。 在 2017 年推出 Transformer 之前,理解文本常用循环神经网络。而 Transformer 完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性,在处理每个词时会注意输入序列里所有其他的词,并给予不同的注意力权重以捕获依赖关系和相关性,且具有自注意力机制和位置编码(因语言顺序很重要)。 神经网络由大量人工神经元联结进行计算,大多数情况下能在外界信息基础上改变内部结构,是一种自适应系统,具备学习功能。它是一种非线性统计性数据建模工具,通常通过基于数学统计学类型的学习方法得以优化,也是数学统计学方法的实际应用,能通过统计学方法让人 工神经网络具有类似人的简单决定和判断能力,这种方法比正式的逻辑学推理演算更具优势。 神经网络可用于监督学习、无监督学习、强化学习。
2024-09-06
layer_xl_bg2ble.safetensors,layer_xl_transparent_conv.safetensors,vae_transparent_encoder.safetensors这一类是大模型,还是Lora?
layer_xl_bg2ble.safetensors、layer_xl_transparent_conv.safetensors、vae_transparent_encoder.safetensors 这类文件可能是大模型的一部分,也可能是 Lora 模型。 在 AI 模型中: 基础模型(英文名 Checkpoint)是生图必需的,任何生图操作必须要选定一个基础模型才能开始。 Lora 是低阶自适应模型,可以理解为基础模型的小插件,生图时可有可无,但在控制面部、材质、物品等细节方面有明显价值。 同时,VAE 是个编码器,功能类似于滤镜,可调整生图的饱和度。
2025-01-31
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
可以简单说下deepseek的原理么
DeepSeek 是中国大模型创业公司中的一员,其背后的量化私募巨头幻方一年前储备了万张 A100 芯片。DeepSeek 发布的 DeepSeek V2 开源模型以低成本的性价比成为行业关注热点,推动了中国大模型价格战的爆发。 DeepSeek 的成功不仅在于技术创新,如提出的 MLA 架构和 DeepSeekMoESparse 结构,还在于其商业模式,即专注于研究和技术创新,而非追求快速商业化。其创始人梁文锋强调了原创式创新的重要性,并讨论了中国 AI 技术创新的未来趋势,以及与硅谷技术社区的差异和交流。 此外,DeepSeek 网站为 https://www.deepseek.com/zh ,使用方便,国内能访问,网页登录便捷,目前完全免费。在生成 2048 游戏代码方面,DeepSeek 对新手较为友好。在 MTBench 上表现优异,中文能力强且性价比高,拥有 2360 亿参数,其中 21B 在生成过程中被激活,60 位专家参与了混合开源模型,在数学、编码和推理方面表现出色。
2025-01-06
关于使用原理 AI的论文
以下是关于 AI 原理的相关内容: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据无标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-27
基于多模态大模型的具身智能 技术原理是什么
基于多模态大模型的具身智能技术原理主要包括以下方面: 决策模块是具身智能系统的核心,负责接收感知模块的环境信息,进行任务规划和推理分析,以指导行动模块生成动作。早期决策模块主要依赖人工编程规则和专用任务算法,而基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面存在局限。 大模型的出现极大增强了具身智能体的智能程度,提高了环境感知、语音交互和任务决策能力。具身智能体的大模型是 AIGA,调用机械臂、相机等身体部件,其发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。 VLA 输入语言、图像或视频流,输出语言和动作,在统一框架内融合互联网、物理世界和运动信息,实现从自然语言指令到可执行动作指令的直接转换。 VLN 输入语言、图像或视频流,输出语言和移动轨迹,用于统一指令输入框架,使大模型直接生成运动方向、目标物体位置等操作信息。 Google Deepmind 从大模型入手打造具身智能,率先提出 Robotics Transformer 系列模型,如 RT1 等,并不断升级。RT1 基于模仿学习中的行为克隆学习范式,输入短的图像序列和指令,输出每个时间步的动作。随着数据量增加,有从分层模型过渡到端到端模型的趋势。 北大 HMI Lab 团队构建了全新的 RoboMamba 多模态大模型,使其具备视觉常识任务和机器人相关任务的推理能力。 在具身智能应用中,更强调“动态”学习方式,如强化学习、模拟学习等,让机器人与环境不断交互学习,通过奖励机制优化行为,获得最优决策策略,摒弃传统控制论算法物理建模的弊端。
2024-12-27
基于世界模型的具身智能 技术原理是什么
基于世界模型的具身智能技术原理主要包括以下方面: 谷歌发布的世界模型 Genie: 能够学习一致的动作空间,可能适合训练机器人,打造通用化的具身智能。 其架构中的多个组件基于 Vision Transformer构建而成,为平衡模型容量与计算约束,在所有模型组件中采用内存高效的 STtransformer 架构。 Genie 包含三个关键组件:潜在动作模型(Latent Action Model,LAM)用于推理每对帧之间的潜在动作;视频分词器(Tokenizer)用于将原始视频帧转换为离散 token;动态模型给定潜在动作和过去帧的 token,用来预测视频的下一帧。潜在动作模型以完全无监督的方式学习潜在动作。 相关论文《Genie:Generative Interactive Environments》已公布,论文地址为 https://arxiv.org/pdf/2402.15391.pdf,项目主页为 https://sites.google.com/view/genie2024/home?pli=1 ,论文的共同一作多达 6 人,包括华人学者石宇歌。 具身智能算法层: 机器人创业公司 Covariant 推出的首个机器人基础模型 RFM1 是基于真实任务数据训练的机器人大模型,共有 80 亿参数,是基于文本、图片、视频、机器人动作、传感器信息等多模态数据进行训练的 any to any 序列模型。 RFM1 将机器人的实际动作也视作 Token,其 token 包括多种模态,每个模块都有专门的 tokenizer 进行处理。操作只有一个——预测下一个 token。 RFM1 对物理世界的理解源自于其学习生成视频的过程,通过接受初始图像和机器人动作的输入,预测接下来视频帧的变化,掌握了模拟世界每个瞬间变化的低层次世界模型。 行业进展: 李飞飞在 AI 3D 生成领域的工作极大地加速了进展,通过对 3D 物体的生成所构建出的世界,再进行降维的视频生成,生成的视频自然符合物理世界的规律,生成的世界也可交互。 世界模型开启了在虚拟世界中预训练机器人的可能,这个虚拟世界完全符合物理规律,可以快速生成无限场景,支持并行训练多个任务,大幅降低试错成本,加速机器人的学习过程,为实现更复杂的机器人行为打开可能。这种进步正在催生新的应用可能,如更自然的人机交互界面、更安全的机器人控制系统、更高效的虚拟训练平台等。世界模型也在改变 AI 理解和交互世界的基本方式。
2024-12-27
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
ocr大模型的原理
OCR 大模型的原理如下: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,一开始给定提示词,大模型结合自身存储的知识进行计算推理,算出下一个单词的概率并输出,新的输出与过去的输入一起成为新的输入来计算下一个词,直到计算出的概率最大时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。预训练需要花费大量时间和算力资源,且在没有其他外部帮助的情况下,大模型所知道的知识信息可能不完备和滞后。 3. 规模效应:参数规模的增加使得大模型实现了量变到质变的突破,最终“涌现”出惊人的“智能”。就像人类自身,无论是物种进化还是个体学习成长,都有类似“涌现”的结构。
2024-12-26