Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

向量检索在大语言模型中的应用主要是为了解决什么问题

Answer

向量检索在大语言模型中的应用主要是为了解决以下问题:

  1. 由于大模型的输入窗口有限,通过文本分割器将文档分割成较小的对象,方便后续的检索和生成,在较短的文本中更容易找到相关信息。
  2. 利用文本嵌入器将文本转换为高维向量,通过衡量文本之间的相似度实现检索功能。
  3. 借助向量存储器存储和查询嵌入,通常使用索引技术如 Faiss 或 Annoy 加速嵌入的检索。
  4. 检索器根据文本查询返回相关的文档对象,常见的实现如向量存储器检索器使用向量存储器的相似度搜索功能进行检索。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:LangChain应用开发指南-大模型的知识外挂RAG

LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)和metadata(dict)。page_content是文档的文本内容,metadata是文档的元数据,例如标题、作者、日期等。文本分割器(DocumentSplitter):文本分割器是一个对象,可以将一个文档对象分割成多个较小的文档对象。这样做的目的是为了方便后续的检索和生成,因为大模型的输入窗口是有限的,而且在较短的文本中更容易找到相关的信息。文本嵌入器(Embeddings):文本嵌入器是一个对象,可以将文本转换为嵌入(Embedding),即一个高维的向量。文本嵌入可以用来衡量文本之间的相似度,从而实现检索的功能。向量存储器(VectorStore):向量存储器是一个对象,可以存储和查询嵌入。向量存储器通常使用一些索引技术,例如Faiss或Annoy,来加速嵌入的检索。检索器(Retriever):检索器是一个对象,可以根据一个文本查询返回相关的文档对象。检索器的一种常见实现是向量存储器检索器(VectorStoreRetriever),它使用向量存储器的相似度搜索功能来实现检索。聊天模型(ChatModel):聊天模型是一个对象,可以根据一个输入序列生成一个输出消息。聊天模型通常基于大模型,例如GPT-3,来实现文本生成的功能。使用LangChain构建RAG应用的一般流程如下:

开发:LangChain-2023 AI应用发展回顾

最常用的向量存储正如前面提到的,检索是大语言模型应用程序的重要组成部分。向量存储正在成为检索相关上下文的主要方式。在LangChain中,我们与60多个向量存储集成——最常用的有哪些呢?我们看到本地向量存储是使用量最大的,其中Chroma、FAISS、Qdrant和DocArray均进入前5名。如果根据用户数量来计算,那么使用量最大的自然就是本地的免费向量存储。在托管的提供商中,Pinecone是唯一进入前5名的托管向量存储。Weaviate紧随其后,这表明原生向量数据库目前使用得比后添加向量功能的数据库更多。在那些添加了向量功能的数据库中,我们看到领先的是Postgres(PGVector)、Supabase、Neo4j、Redis、Azure Search和Astra DB。需要注意的是,这些排名基于使用给定提供商的用户数量。[heading1]最常用的嵌入[content]最常用的嵌入为了使用向量存储,您需要为文本片段计算嵌入。那么开发人员是如何做到这一点的呢?与大语言模型类似,OpenAI占据主导地位——但之后我们看到了更多样化。开源提供商使用得更多一些,其中Hugging Face位居第二,GPT4All和Ollama也进入前8名。在托管提供商方面,我们看到Vertex AI实际上超过了AzureOpenAI,Cohere和Amazon Bedrock也不遑多让。

开发:LangChain应用开发指南-大模型的知识外挂RAG

LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)和metadata(dict)。page_content是文档的文本内容,metadata是文档的元数据,例如标题、作者、日期等。文本分割器(DocumentSplitter):文本分割器是一个对象,可以将一个文档对象分割成多个较小的文档对象。这样做的目的是为了方便后续的检索和生成,因为大模型的输入窗口是有限的,而且在较短的文本中更容易找到相关的信息。文本嵌入器(Embeddings):文本嵌入器是一个对象,可以将文本转换为嵌入(Embedding),即一个高维的向量。文本嵌入可以用来衡量文本之间的相似度,从而实现检索的功能。向量存储器(VectorStore()):向量存储器是一个对象,可以存储和查询嵌入。向量存储器通常使用一些索引技术,例如Faiss()或Annoy,来加速嵌入的检索。检索器(Retriever):检索器是一个对象,可以根据一个文本查询返回相关的文档对象。检索器的一种常见实现是向量存储器检索器(VectorStoreRetriever),它使用向量存储器的相似度搜索功能来实现检索。聊天模型(ChatModel):聊天模型是一个对象,可以根据一个输入序列生成一个输出消息。聊天模型通常基于大模型,例如GPT-3,来实现文本生成的功能。使用LangChain构建RAG应用的一般流程如下:

Others are asking
如何根据文本内容从在线图片库、本地图片库中精准检索出与其文本内容相对应的图片?有没有对应的工作流推荐?
以下是根据文本内容为您整理的从在线图片库、本地图片库中精准检索对应图片的方法和工作流推荐: 在线图片库检索: 利用公众号搜索同行的封面图。例如,在微信中搜一搜相关关键词,如“Claude”,查看文章中的封面图。若正文里没有封面图,可使用壹伴浏览器插件的“查看封面”按钮(需会员),或者使用秘塔 AI 搜索工具,输入文章链接获取封面。工具链接:https://www.mgpaiban.com/tool/wxfm.html 。 本地图片库检索: 对于一些特定的设计工具,如星流一站式 AI 设计工具,其左侧图片案例板块具有图像筛选功能,包括根据正常生图参数进行推荐、推荐热门图片以及输入需求描述进行搜索。同时,还可以通过点击“发送到画布”将图像发送到“无限画布”中,或者进行生图参数的整体或单个调取。 在图像检索过程中,还涉及到一些其他相关操作,如视频理解模型测试、图像风格化转换、OCR 识别、图片分享工作流、智能抠图、画板操作与背景添加、品牌 LOGO 添加与自适应调整、图像流与工作流结合,以及在图像与文本处理工作中的调试与优化,包括获取文本信息与调整提示词、处理图像流与添加参数、解决排版与发布中的问题等。
2024-11-29
clip模型能应用与跨模态检索
CLIP 模型能应用于跨模态检索。以下是关于 CLIP 模型的一些详细信息: 对比语言图像预训练(CLIP)通过将图像和文本转换成固定大小的向量,使它们在一个共同的嵌入空间中对齐来训练模型,对于多模态信息检索和相关任务非常重要。 在 Stable Diffusion 中,CLIP 模型作为文生图模型的文本编码模块,决定了语义信息的优良程度,影响图片生成的多样性和可控性。它包含 Text Encoder 和 Image Encoder 两个模型,分别用于提取文本和图像的特征,可灵活切换,且具有强大的 zeroshot 分类能力。其庞大的图片与标签文本数据的预训练赋予了其强大的能力,把自然语言领域的抽象概念带到了计算机视觉领域。 自 2021 年以来,多模态模型成为热门议题,CLIP 作为开创性的视觉语言模型,将 Transformer 架构与视觉元素相结合,便于在大量文本和图像数据集上进行训练,可在多模态生成框架内充当图像编码器。 为解决 CLIP 模型在仅文本任务中表现不如专门用于文本的模型,导致信息检索系统处理仅文本和多模态任务时效率低下的问题,已提出新颖的多任务对比训练方法训练相关模型,使其在文本图像和文本文本检索任务中达到最先进性能。
2024-10-31
AI在信息检索领域的应用
AI 在信息检索领域有广泛的应用,以下为您详细介绍: 1. 存在能联网检索的 AI,它们通过连接互联网,实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 2. Notion CEO 认为,AI 是 Notion 的机会。在 language model 出现之前,在知识库搜索内容通常需要很精确的关键词,甚至要询问同事信息存放的数据库。但现在可以直接询问 Notion AI 想要搜寻的问题,很快就能得到答案。 3. 在信息爆炸的时代,AI 技术极大地提升了信息检索和处理的效率。近期热门融资的 AI 产品中,有多种在信息检索方面表现出色的,比如: You.com:多种搜索模式且重隐私的搜索引擎。 Genspark:通过 Sparkpages 来满足用户个性化的搜索需求。 Rockset:刚被 OpenAI 收购的提供实时搜索和分析数据库服务的公司。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-16
我想做一个可以智能检索的ai工具,用语音直接提出问题,然后工具根据原有知识库里面的资料,回答提出的问题
要做一个可以智能检索的 AI 工具,用语音直接提问并根据原有知识库回答,以下是一些相关信息: 关于冷启动和提升准确度: 对于一些如“你好”“你是谁”“10 的 9 次方等于多少”等有标准答案的数学、编程、生活常识问题,可不联网检索,直接用大模型训练好的知识库回答,这样能节省搜索成本,快速响应提问,提升搜索效率。 主要实现方案有两种:一是内置问题库,将常见无需联网的问题缓存,与用户提问做相似度匹配,命中关键词库则大模型直接回复,不联网检索,但存在枚举无法穷尽的问题;二是设置提示词,请求大模型判断是否需要联网,但大模型的识别准确度不够高。 意图识别的关键作用是对用户提问进行分类,如导航类(希望找到特定网站或网页)和信息查询类(希望找到问题答案或事物详细信息)。 关于检索原理: 文本预处理包括去除无关字符、标准化文本(如转换为小写)、分词等,以清洁和准备文本数据。 嵌入表示是将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型如 Word2Vec、GloVe、BERT 等完成,将每个词或短语映射到高维空间中的一个点(即向量)。 对于整个问题句子,可能应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示,以捕捉句子的上下文信息。 在某些情况下,问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统协同工作。 在知识库检索阶段,不是依靠传统关键字搜索,而是依靠问题在空间中的向量位置,寻找距离这个向量最近的其他词句来完成检索。
2024-09-24
请给我推荐一些中国能用(不需要翻墙)的信息检索AI
以下是一些在中国无需翻墙就能使用的信息检索 AI: ChatGPT Plus:用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot:作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 You.com 和 Neeva AI 等搜索引擎:提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 Kimi 智能助手: 是 ChatGPT 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。 不用科学上网、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios):
2024-09-08
专攻信息检索的AI
以下是一些专攻信息检索的 AI: 1. ChatGPT Plus:用户可以开启 web browsing 功能,实现联网检索。 2. Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot:作为 AI 助手,旨在简化在线查询和浏览活动。 4. You.com 和 Neeva AI:提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 5. Dot:能够联网搜索信息,并根据用户的偏好将信息呈现和检索出来。 6. MiniAGI:基于 GPT3.5Turbo/4 的最小通用自主代理,可执行多种任务,如创建游戏、分析股票价格等,但没有长时记忆。 7. Embra AI Agents:面向企业和个人,是首个可通过 Mac App 访问的 AI 代理中心。 8. Height Copilot by Height:使工作流的管理更加自动化,帮助团队构建更好的产品。 9. Aomni:专用于信息检索而非内容生成的 AI 代理,能够在互联网上找到、提取和处理数据,无需 API,采用 AutoGPT 架构来智能规划查询,并确保正确的数据来源和多样化的结果。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-08
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
向量数据库和矢量数据库的区别
向量数据库和传统数据库(可视为您所提到的“矢量数据库”)主要有以下区别: 1. 查找方式: 传统数据库需要精确的关键词或类别进行查找,如同在普通图书馆中需知道书的具体位置或分类。 向量数据库可以通过自然语言描述所需内容,系统能理解意图并找到最相关的内容。 2. 组织方式: 传统数据库中信息被严格分类和组织,类似图书馆里的书架和编号系统。 向量数据库中信息根据内在特征和相似性自然聚集,如同魔法图书馆里书籍自动根据内容相似性浮动聚集。 3. 灵活性: 传统数据库若要更换组织方式,可能需重新安排整个架构。 向量数据库中,新加入的数据会自动找到合适位置,无需重新组织整个系统。 4. 发现新内容: 传统数据库较难偶然发现相关但之前未知的内容。 向量数据库在搜索时可能发现许多相关但之前不知道的内容,因其理解内容本质而非仅依赖标签。 此外,向量数据库以多维向量形式保存信息,代表某些特征或质量,能根据数据的向量接近度或相似度快速、精确地定位和检索数据,从而实现根据语义或上下文相关性进行搜索。而传统数据库通常以表格形式存储简单数据,搜索依赖精确匹配或设定标准。 为了在人工智能和机器学习应用中利用非结构化数据(如文本、图像和音频等),需要使用嵌入技术将其转换为数字表示,嵌入过程通常通过特殊神经网络实现,使计算机能更有效地辨别数据中的模式和关系。
2025-01-10
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
数据如何向量化
数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。 在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。 在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小最大缩放和 Z 得分标准化。 在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如,表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。
2024-10-12
以图片为主的PDF文件向量化的本地大模型推荐
以下是关于以图片为主的 PDF 文件向量化的本地大模型的相关信息: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 技术实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 PDF 翻译的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择相关翻译选项。 3. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传多种格式文件,支持选择领域和导出格式。 6. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档,但有免费次数限制且进阶功能需付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
有哪些能够本地部署的AI视频生成模型
以下是一些能够本地部署的 AI 视频生成模型: 1. Stable Video Diffusion 模型: 准备工作:手动下载相关内容,分别放到指定路径。 模型选择:点击下拉箭头选择不同模型版本,勾选 load Model。 视频创作:支持图生视频,图片来源可选择 Midjourney、Stable Diffusion 等生成的图片,上传到 SVD 进行视频生成,可调节左侧参数控制效果。 保存路径:生成的视频在 outputs 下。 2. LTXVideo 模型: 基于 2B 参数 DiT,能够以 768x512 分辨率生成 24 FPS 的视频,速度比观看还快。 专为 RTX 4090 等 GPU 优化,使用 bfloat16 精度,实现高效内存使用且不影响质量。 ComfyUI 现已支持该模型,用户只需下载模型文件并获取工作流即可在本地运行。 3. Sora 模型: 功能:文生视频、图生视频、视频生视频,支持多种视频定制选项,如分辨率、视频长度和视频风格;具有故事板功能,允许用户通过时间线指导视频中的多个动作;提供混音和编辑功能,包括视频混音、延伸和剪辑、创建循环视频等;还有混合功能,可将两个视频场景合并成一个新的场景。 费用和订阅套餐:对于拥有 OpenAI Plus 或 Pro 账户的用户,使用包含在现有订阅中。OpenAI Plus 订阅每月 50 次视频生成次数,OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可根据需要选择更高分辨率的视频生成,但可能会减少每月使用次数。发布初期,某些地区(如欧洲和英国)可能会有延迟。
2025-01-21
国内文生图模型
以下是关于国内文生图模型的相关信息: Recraft 模型:用 8 个月自研模型,包含处理数据的模型、标注工作、训练 OCR 模型、新构建的数据集等。Recraft 生成带有长文本图像的流程图解,但存在生成默认是外国面孔而非亚洲面孔且生成的亚洲人不太自然的情况,可能与数据集有关。只有少数公司真正从头训练模型,创建自己的模型困难且成本高,需要超强团队和资金。 模型能力方面: 文本编码器的能力是文生图模型语义理解能力的关键。一开始大部分模型使用 CLIP 作为文本编码器,但存在一些问题。新的模型纷纷优化文本编码器能力,如引入更大更强的 T5XXL 或结合多个特征,但开源模型在中文生图方面能力一般。 腾讯开源的 HunyuanDiT 是较可用的中文生图模型,但仍存在优化空间。 Kolors 是最近开源的给力文生图模型,改进全面,技术实力强。
2025-01-21
吴恩达大模型教程
以下是一些与吴恩达大模型相关的教程和资源: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 提示工程指南: 地址: 简介:基于对大语言模型的兴趣编写的全新提示工程指南,介绍了相关论文研究等。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:由两位 LLM 创业者维护的 Langchain 中文文档。 LLM 九层妖塔: 地址: 简介:包含 ChatGLM 等实战与经验。 目录:吴恩达讲 Prompt https://github.com/zard1152/deepLearningAI/wiki Coze 复刻:吴恩达开源的 AI 翻译项目 复刻步骤:包括配置反思优化的提示词、结合反思优化建议再次翻译、选择输出方式等。 大语言模型分为基础 LLM 和指令微调 LLM 两类。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会使用人类反馈强化学习(RLHF)技术优化。提示的关键原则包括尽可能保证下达的指令“清晰、没有歧义”,给大模型思考的时间以及足够的时间去完成任务。
2025-01-21
有哪个大模型工具可以提供“word文本转excel表格”功能
以下是一些可以将 word 文本转 excel 表格的大模型相关方法: 1. Markdown 格式输出 Markdown 编辑器 Excel:将大模型的输出结果复制到 Markdown 编辑器(如 Typora),然后再直接复制到 Excel,就可以得到直接可用的数据文档。 2. Markdown 格式输出 Excel 数据分组:把大模型的输出直接复制到 Excel,一般使用 Excel 的数据分列功能,用“|”作为分隔符号处理数据。 3. Markdown 格式输出 Excel 数据分组:要求大模型把输出转换成 CSV 格式,然后把结果复制到 txt 文档,另存为成 csv 文件(注意:txt 另存为时,文件后缀名更改为.csv,编码选择 ANSI)。
2025-01-21
有哪个大模型工具可以提供“word技术规范书转功能清单”功能
目前尚未有确切的大模型工具专门提供“word 技术规范书转功能清单”的功能。但一些通用的自然语言处理工具和办公软件的插件可能会对您有所帮助,例如一些基于云服务的办公自动化工具,不过其效果可能因具体的文档内容和格式而有所差异。
2025-01-21
集文档管理、AI写作、资料搜索的AI大模型推荐
以下为您推荐一些集文档管理、AI 写作、资料搜索功能于一体的 AI 大模型: 1. RAG: 工作原理:就像超级智能的图书馆员,包括检索(从庞大知识库中找相关信息)、增强(筛选优化信息)、生成(整合信息给出连贯回答)。 优点:成本效益高、灵活性强、可扩展性好。 缺点:回答准确性相对不够。 相关网站:Metaso.cn(学术、研究)、So.360.com(生活、便捷)、Devv.ai(程序员、开发者)、Perplexity(付费、高质量)、Bing.com(通用)、Google.com(全球、精准)。 内幕:平均调用 9 次大语言模型,网络爬虫预先建立数据库,用便宜但推理弱的模型(免费版)。 2. 对于律师工作: AI 大模型擅长:信息检索与整理、模式识别与预测、自动化文档处理、多任务处理能力。 AI 大模型不擅长:法律解释与推理、理解道德和情感、创新或个性化的服务。 律师擅长:法律专业知识、沟通与谈判。 3. 沉浸式翻译:主打所有网页双语翻译、PDF 文档对照阅读,新功能可一键开启网页中 Youtube 视频的双语字幕。插件安装地址:https://immersivetranslate.com/ 4. Kimi:由月之暗面科技有限公司开发,最大特点是超长文本(支持最多 20 万字的输入和输出)处理和基于文件、链接内容对话的能力,能阅读并理解多种格式文件内容为用户提供回复。
2025-01-21
ai语言模型记忆能力与什么相关,可以拥有人类相当的记忆吗
AI 语言模型的记忆能力主要与以下因素相关: 1. 长期记忆:主要有长文本(持久化)、总结、RAG 等实现方式。长文本处理中的 KV Cache 可通过缓存历史计算的 Key(K)和 Value(V)减少冗余计算,但需额外存储空间,可能导致显存占用增加,未来结合持久化 KV Cache、KV Cache 的压缩技术有望控制成本,从而打造出记忆力超越人类的智能体。 2. 短期记忆:主要存在于模型的上下文中,由对话内容(用户输入、模型输出)和系统提示词组成。 Inworld AI 开发的角色引擎,增加了可配置的安全性、知识、记忆、叙事控制、多模态等功能,其中长期记忆方面,角色能以类似人类的记忆功能操作,从闪存和长期记忆中检索信息。 人类的思维是由自然语言或感官记忆构成的超高维时间序列,而人工智能与人类不同,人类会为事物赋予意义与价值,人工智能则更追求“更准”。强化学习是人工智能的一个重要分支,通过定义状态、动作与奖励等元素,让 AI 求解如何选择动作以获得最大的期望奖励总和。
2025-01-20
ai语言模型是如何运作的
AI 语言模型的运作机制主要包括以下几个方面: 1. 对于大语言模型(LLM),如豆包在回复时是一个字一个字地推理生成内容,即流式输出。这类似于输入法的输入联想逻辑,会根据输入的单个字或上下文推测下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易受不相干信息干扰。为解决这些问题,出现了词向量机制和 Transformer 模型中的 Attention 自注意力机制。 2. 大型语言模型通过大量的数据训练来学习语言的结构和模式,包括词汇、语法、句子结构以及上下文关系。当接收到输入时,会根据学习到的知识生成连贯的回答,类似于词语接龙游戏。 3. 以 Kimi Chat 为例,大模型会利用网页搜索工具,在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。同时,大模型还可以通过自行规划任务执行的工作流路径,如先识别男孩的姿势,再找到相关模型处理等。 4. 在多智能体协作方面,如吴恩达通过开源项目 ChatDev 举例,可让一个大语言模型扮演不同角色相互协作,共同开发应用或复杂程序。 5. OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,并对过去的行动进行自我批评和反思,以提高最终结果的质量。 需要注意的是,大模型并不拥有无限知识,其知识来源于训练过程中接触到的数据,这些数据是有限的。虽然大模型可以处理和生成大量信息,但只能回答在训练过程中见过或类似的问题,且训练后的知识库不会自动更新。
2025-01-20
请推荐AI智能体,要求是通过通用语言大模型能直接输出思维导图的
以下为为您推荐的能通过通用语言大模型直接输出思维导图的 AI 智能体: 1. 多智能体 AI 搜索引擎: 第一步,快速搜索补充参考信息,使用工具 API WebSearchPro。 第二步,用模型规划和分解子任务,通过 GLM40520 的模型分析。 第三步,用搜索智能体完成子任务,智能体 API 的调用方式可参考相关文档。智能体 ID 为 659e54b1b8006379b4b2abd6,是连接全网内容,精准搜索,快速分析并总结的智能助手。 第四步,总结子任务生成思维导图,智能体 API 的调用方式可参考相关文档。智能体 ID 为 664e0cade018d633146de0d2,能够告别整理烦恼,将任何复杂概念秒变脑图。 2. AI 智能体:企业自动化的新架构Menlo Ventures:未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体尚未达到此水平。Menlo 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型,包括决策智能体、轨道智能体和通用人工智能体。 3. AI Share Card 插件:在开发过程中,将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。选用的是 GLM4flash,具有较长的上下文窗口、响应速度快、并发支持高、免费或低价等优点。
2025-01-20
通过通用语言大模型能直接输出思维导图的AI智能体有那些推荐
以下是为您推荐的一些通过通用语言大模型能直接输出思维导图的 AI 智能体: 1. 豆包:输入简单提示词就能创建个人 AI 智能体。 2. GLM4flash:在处理纯文本总结任务时,仅需 13B 或更小参数的模型,加上精调的提示词,就能产生很好的结果。具有较长的上下文窗口、响应速度快、并发支持高、免费或价格低等优点。 需要注意的是,AI 领域发展迅速,新的产品和服务不断涌现,您可以持续关注相关领域的最新动态以获取更多更好的选择。
2025-01-20
如何部署私有大语言模型?
部署私有大语言模型通常包括以下步骤: 1. 部署大语言模型: 下载并安装 Ollama:根据您的电脑系统,从 https://ollama.com/download 下载 Ollama。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/。 下载模型:如 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车。等待下载完成。 2. 部署 Google Gemma: 进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。 查找 cmd 进入命令提示符,输入 ollama v 检查版本,安装完成后版本应该显示 0.1.26,cls 清空屏幕。 直接输入 ollama run gemma 运行模型(默认是 2b),首次需要下载,需要等待一段时间,如果想用 7b,运行 ollama run gemma:7b 。完成以后就可以直接对话。 3. 关于 Ollama 的其他特点: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型的温度参数等。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面。 总的来说,Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有良好的可扩展性和多样的使用场景。安装完之后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序即可,在 linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。
2025-01-17
语音翻译在语言输出的 有什么好用的
以下是一些好用的语音翻译相关工具和应用: Deepdub:专注于将对话翻译成任何语言,并以相同的声音发音。 Eleven Labs 推出的 Dubbing:可以将视频/音频翻译成不同的语言,同时保持原始的声音。支持十一种语言的 AI 配音功能,v2 模型目前支持 20 多种语言的语音翻译,包括印地语、葡萄牙语、西班牙语、日语、乌克兰语、波兰语或阿拉伯语。还可以检测多个说话人的声音,支持背景音分离和环境音降噪。 在音频翻译性能方面,GPT4o 在语音翻译方面创下了新的领先地位,并在 MLS 基准测试中优于 Whisperv3,显著提高了语音识别性能,尤其是对于资源匮乏的语言。
2025-01-14